A069921
Define C(n) by the recursion C(0) = 1 + I where I^2 = -1, C(n+1) = 1/(1+C(n)); then a(n) = (-1)^n/Im(C(n)) where Im(z) is the imaginary part of the complex number z.
Original entry on oeis.org
1, 5, 10, 29, 73, 194, 505, 1325, 3466, 9077, 23761, 62210, 162865, 426389, 1116298, 2922509, 7651225, 20031170, 52442281, 137295677, 359444746, 941038565, 2463670945, 6449974274, 16886251873, 44208781349, 115740092170, 303011495165, 793294393321
Offset: 0
-
[3*Fibonacci(n)*Fibonacci(n+2)+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Sep 24 2015
-
a[n_] := 3Fibonacci[n]Fibonacci[n+2]+(-1)^n
(*A000045*) F[n_] := (((1 + Sqrt[5])/2)^n - ((1 - Sqrt[5])/2)^n)/Sqrt[5]; (*A000032*) L[n_] := ((1 + Sqrt[5])/2)^n + ((1 - Sqrt[5])/2)^n; Table[FullSimplify[ExpandAll[(F[n]^2 + L[n]^2)/2]], {n, 0, 50}] (* Roger L. Bagula, Nov 17 2008 *)
LinearRecurrence[{2, 2, -1}, {1, 5, 10}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
a(n)=([0,1,0; 0,0,1; -1,2,2]^n*[1;5;10])[1,1] \\ Charles R Greathouse IV, Sep 23 2015
A069959
Define C(n) by the recursion C(0) = 2*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 2*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of the complex number z.
Original entry on oeis.org
1, 5, 8, 25, 61, 164, 425, 1117, 2920, 7649, 20021, 52420, 137233, 359285, 940616, 2462569, 6447085, 16878692, 44188985, 115688269, 302875816, 792939185, 2075941733, 5434886020, 14228716321, 37251262949, 97525072520, 255323954617, 668446791325, 1750016419364
Offset: 0
-
F:=Fibonacci; [F(n+1)^2 +4*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
-
a[n_]:= 4Fibonacci[n]^2+Fibonacci[n+1]^2;
4#[[1]]^2+#[[2]]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[{2,2,-1},{1,5,8},30] (* Harvey P. Dale, Aug 25 2017 *)
-
a(n) = round((2^(-1-n)*(-3*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-11+sqrt(5))+(3+sqrt(5))^n*(11+sqrt(5))))/5) \\ Colin Barker, Sep 28 2016
-
Vec(-(x-1)*(4*x+1)/((x+1)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Sep 28 2016
-
f=fibonacci; [f(n+1)^2+4*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022
A069960
Define C(n) by the recursion C(0) = 3*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 3*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of the complex number z.
Original entry on oeis.org
1, 10, 13, 45, 106, 289, 745, 1962, 5125, 13429, 35146, 92025, 240913, 630730, 1651261, 4323069, 11317930, 29630737, 77574265, 203092074, 531701941, 1392013765, 3644339338, 9541004265, 24978673441, 65395016074, 171206374765, 448224108237, 1173465949930
Offset: 0
-
F:=Fibonacci; [F(n+1)^2 +9*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
-
a[n_] := 9Fibonacci[n]^2+Fibonacci[n+1]^2
9*First[#]+Last[#]&/@(Partition[Fibonacci[Range[0,30]],2,1]^2) (* Harvey P. Dale, Mar 06 2012 *)
-
a(n) = round((2^(-1-n)*(-(-1)^n*2^(5+n)-(3-sqrt(5))^n*(-21+sqrt(5))+(3+sqrt(5))^n*(21+sqrt(5))))/5) \\ Colin Barker, Sep 30 2016
-
Vec(-(x-1)*(9*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Sep 30 2016
-
f=fibonacci; [f(n+1)^2 +9*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022
A069961
Define C(n) by the recursion C(0) = 4*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 4*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.
Original entry on oeis.org
1, 17, 20, 73, 169, 464, 1193, 3145, 8212, 21521, 56321, 147472, 386065, 1010753, 2646164, 6927769, 18137113, 47483600, 124313657, 325457401, 852058516, 2230718177, 5840095985, 15289569808, 40028613409, 104796270449, 274360197908, 718284323305, 1880492771977
Offset: 0
-
F:=Fibonacci; [F(n+1)^2 + 16*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
-
a[n_]:= 16Fibonacci[n]^2+Fibonacci[n+1]^2; Array[a,30,0]
16First[#]^2+Last[#]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Nov 08 2011 *)
-
a(n) = round((2^(-1-n)*(-15*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-35+sqrt(5))+(3+sqrt(5))^n*(35+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
Vec(-(x-1)*(16*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
f=fibonacci; [f(n+1)^2 +16*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022
A069962
Define C(n) by the recursion C(0) = 5*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 5*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.
Original entry on oeis.org
1, 26, 29, 109, 250, 689, 1769, 4666, 12181, 31925, 83546, 218761, 572689, 1499354, 3925325, 10276669, 26904634, 70437281, 184407161, 482784250, 1263945541, 3309052421, 8663211674, 22680582649, 59378536225, 155455026074, 406986541949, 1065504599821
Offset: 0
-
F:=Fibonacci; [F(n+1)^2 + 25*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
-
a[n_]:= 25*Fibonacci[n]^2+Fibonacci[n+1]^2; Table[a[n], {n,0,30}]
LinearRecurrence[{2,2,-1},{1,26,29},30] (* Harvey P. Dale, Mar 18 2018 *)
-
a(n) = round((2^(-1-n)*(-3*(-1)^n*2^(5+n)-(3-sqrt(5))^n*(-53+sqrt(5))+(3+sqrt(5))^n*(53+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
Vec(-(x-1)*(25*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
f=fibonacci; [f(n+1)^2 +25*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022
Showing 1-5 of 5 results.
Comments