cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070047 Number of partitions of n in which no part appears more than twice and no two parts differ by 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 5, 5, 8, 8, 12, 12, 19, 19, 27, 28, 39, 41, 55, 58, 77, 82, 106, 113, 145, 156, 196, 210, 262, 283, 348, 376, 459, 497, 600, 651, 781, 849, 1009, 1097, 1298, 1413, 1660, 1807, 2113, 2302, 2676, 2916, 3377, 3681, 4242, 4623, 5309, 5787, 6619
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2002

Keywords

Comments

Coefficients in expansion of permanent of infinite tridiagonal matrix: matrix([[1, x, 0, 0, 0, ...], [1+x, 1, x^2, 0, 0, ...], [0, 1+x^2, 1, x^3, 0, ...], [0, 0, 1+x^3, 1, x^4, ...], ...]). - Vladeta Jovovic, Jul 18 2004
Number of partitions of n into non-multiples of 3 in which no two parts differ by 1 (see the Andrews-Lewis reference). Example: a(6)=5 because we have 51,42,411,222,111111. - Emeric Deutsch, May 19 2008
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 5*x^7 + 8*x^8 + 8*x^9 + 12*x^10 + ...
G.f. = 1/q + q^23 + 2*q^47 + q^71 + 3*q^95 + 3*q^119 + 5*q^143 + 5*q^167 + 8*q^191 + ...
a(6)=5 because we have 6,51,42,411,33.
		

References

  • D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.

Crossrefs

Programs

  • Haskell
    a070047 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+1) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-2), j=1..min(n/i, 2))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 18 2013
  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Product[ (1 - x^(6 k - 3))^2 (1 - x^(6 k)), {k, Ceiling[ n/6]}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Dec 03 2013 *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-2], {j, 1, Min[n/i, 2]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 04 2015, after Alois P. Heinz *)
    nmax = 100; CoefficientList[Series[Product[1 / ( (1-x^(3*k-2)) * (1-x^(3*k-1)) * (1 + x^(3*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jun 02 2011 */
    

Formula

Expansion of phi(-x^3) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions. - Michael Somos, Jun 02 2011
Expansion of q^(1/24) * eta(q^3)^2 / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Dec 04 2002
Euler transform of period 6 sequence [ 1, 1, -1, 1, 1, 0, ...]. - Michael Somos, Dec 04 2002
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = (2/3)^(1/2) g(t) where q = exp(2 Pi i t) and g is the g.f. of A233006.
G.f.: Prod_{k>0} (1 - x^(6*k - 3))^2 * (1 - x^(6*k)) / (1 - x^k).
G.f.: Prod_{n>0}[(1-q^(6n-3))/[(1-q^(3n-2))(1-q^(3n-1))]]. - Emeric Deutsch, May 19 2008
a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt((24*n-1)/2)) / sqrt(3*(24*n-1)) ~ exp(Pi*sqrt(n/3)) / (2*3^(3/4)*n^(3/4)) * (1 - (3*sqrt(3)/(8*Pi) + Pi/(48*sqrt(3)))/sqrt(n) + (Pi^2/13824 - 45/(128*Pi^2) + 5/128)/n). - Vaclav Kotesovec, Sep 02 2015, extended Jan 11 2017
G.f.: Product_{n >= 1} (1 + q^n + q^(2*n))/(1 + q^(3*n)). - Peter Bala, Jan 04 2025

Extensions

Additional comments from Michael Somos, Dec 04 2002