cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318366 a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Comments

Dirichlet convolution of A001222 with itself.

Examples

			24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - _David A. Corneth_, Jan 12 2019
		

Crossrefs

Cf. A000005, A001222, A008578 (positions of 0's), A069264, A070288, A112967, A317938, A322375.

Programs

  • Maple
    f:= proc(n) local F,G,t,x;
       F:= map(t -> t[2], ifactors(n)[2]);
       G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)),x);
      (convert(F,`+`)-1)*D(G)(1) - (D@@2)(G)(1);
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 17 2019
  • Mathematica
    Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
  • PARI
    a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
    
  • PARI
    a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019

Formula

a(A025487(n)) = A322375(n). - David A. Corneth, Jan 12 2019
From Robert Israel, Jan 17 2019: (Start)
If x and y are coprime, a(x*y) = a(x)*A000005(y) + A000005(x)*a(y) + A000005(x*y)*A001222(x)*A001222(y).
If p is prime, a(p^k) = (k^3-k)/6 = A000292(k-1). (End)

A328486 Dirichlet g.f.: zeta(s)^4 * (1 - 2^(-s))^2.

Original entry on oeis.org

1, 2, 4, 3, 4, 8, 4, 4, 10, 8, 4, 12, 4, 8, 16, 5, 4, 20, 4, 12, 16, 8, 4, 16, 10, 8, 20, 12, 4, 32, 4, 6, 16, 8, 16, 30, 4, 8, 16, 16, 4, 32, 4, 12, 40, 8, 4, 20, 10, 20, 16, 12, 4, 40, 16, 16, 16, 8, 4, 48, 4, 8, 40, 7, 16, 32, 4, 12, 16, 32, 4, 40, 4, 8, 40, 12, 16, 32, 4, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001227 with itself.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; tau(2*n)-tau(n) end:
    a:= n-> add(b(d)*b(n/d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 16 2019
  • Mathematica
    nmax = 80; A001227 = Table[DivisorSum[n, Mod[#, 2] &], {n, 1, nmax}]; Table[DivisorSum[n, A001227[[#]] A001227[[n/#]] &], {n, 1, nmax}]
    f[2, e_] := e + 1; f[p_, e_] := (e + 1)*(e + 2)*(e + 3)/6; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)

Formula

a(n) = Sum_{d|n} A001227(d) * A001227(n/d).
Sum_{k=1..n} a(k) ~ n * (log(n)^3/24 + (g/2 + log(2)/4 - 1/8)* log(n)^2 + (1/4 - g + 3*g^2/2 - log(2)/2 + 2*g*log(2) - sg1)* log(n) - 1/4 + (1 - 2*log(2))*g + (3*log(2) - 3/2)*g^2 + g^3 + log(2)/2 - log(2)^3/6 + (1 - 3*g - 2*log(2))* sg1 + sg2/2), where g is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(2^e) = e + 1, and a(p^e) = (e + 1)*(e + 2)*(e + 3)/6 for odd primes p. - Amiram Eldar, Nov 30 2020

A349712 a(n) = Sum_{d|n} sopf(d) * sopf(n/d).

Original entry on oeis.org

0, 0, 0, 4, 0, 12, 0, 8, 9, 20, 0, 32, 0, 28, 30, 12, 0, 42, 0, 48, 42, 44, 0, 52, 25, 52, 18, 64, 0, 124, 0, 16, 66, 68, 70, 87, 0, 76, 78, 76, 0, 164, 0, 96, 78, 92, 0, 72, 49, 90, 102, 112, 0, 72, 110, 100, 114, 116, 0, 234, 0, 124, 102, 20, 130, 244, 0, 144, 138, 236, 0, 132, 0, 148, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2021

Keywords

Comments

Dirichlet convolution of A008472 with itself.

Crossrefs

Programs

  • Mathematica
    sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; a[n_] := Sum[sopf[d] sopf[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
  • PARI
    sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
    a(n) = sumdiv(n, d, sopf(d)*sopf(n/d)); \\ Michel Marcus, Nov 26 2021
    
  • Python
    from sympy import divisors, factorint
    def sopf(n): return sum(factorint(n))
    def a(n): return sum(sopf(d)*sopf(n//d) for d in divisors(n))
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Nov 26 2021

Formula

Dirichlet g.f.: ( zeta(s) * primezeta(s-1) )^2.
a(n) = Sum_{d|n} A061397(d) * A319131(n/d).
a(p) = 0 for p prime. - Michael S. Branicky, Nov 26 2021
a(p^k) = (k-1)*p^2 for p prime and k > 0. - Chai Wah Wu, Nov 28 2021
Showing 1-3 of 3 results.