A070319 a(n) = Max_{k=1..n} tau(k) where tau(x)=A000005(x) is the number of divisors of x.
1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 1
References
- Sándor, J., Crstici, B., Mitrinović, Dragoslav S. Handbook of Number Theory I. Dordrecht: Kluwer Academic, 2006, p. 44.
- S. Wigert, Sur l'ordre de grandeur du nombre des diviseurs d'un entier, Arkiv. for Math. 3 (1907), 1-9.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409.
Programs
-
Haskell
a070319 n = a070319_list !! (n-1) a070319_list = scanl1 max $ map a000005 [1..] -- Reinhard Zumkeller, Apr 01 2011
-
Mathematica
a = {0}; Do[AppendTo[a, Max[DivisorSigma[0, n], a[[n]]]], {n, 120}]; Rest@ a (* Michael De Vlieger, Sep 29 2015 *)
-
PARI
a(n)=vecmax(vector(n,k,numdiv(k)))
-
PARI
v=vector(100);v[1]=1;for(n=2,#v,v[n]=max(v[n-1],numdiv(n))); v \\ Charles R Greathouse IV, Sep 12 2012
-
PARI
A070319(n,m=1,s=2)={for(k=s,n,m
M. F. Hasler, Sep 12 2012 -
PARI
{a=0;for(n=1,100,print1(a=A070319(n,a,n),","))} /* Using this pattern, computation of a(1..10^6) is faster than "normal" computation of a(1..3000). */
Formula
a(n) = exp(log(2) log(n) / log(log(n)) + O(log(n) log(log(log(n))) / (log(log(n)))^2)). (See Sándor reference for more formulas.) - Eric M. Schmidt, Jun 30 2013
Comments