A070321 Greatest squarefree number <= n.
1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 11, 13, 14, 15, 15, 17, 17, 19, 19, 21, 22, 23, 23, 23, 26, 26, 26, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 39, 41, 42, 43, 43, 43, 46, 47, 47, 47, 47, 51, 51, 53, 53, 55, 55, 57, 58, 59, 59, 61, 62, 62, 62, 65, 66, 67, 67, 69, 70, 71, 71
Offset: 1
Examples
From _Gus Wiseman_, Dec 10 2024: (Start) The squarefree numbers <= n are the following columns, with maxima a(n): 1 2 3 3 5 6 7 7 7 10 11 11 13 14 15 15 1 2 2 3 5 6 6 6 7 10 10 11 13 14 14 1 1 2 3 5 5 5 6 7 7 10 11 13 13 1 2 3 3 3 5 6 6 7 10 11 11 1 2 2 2 3 5 5 6 7 10 10 1 1 1 2 3 3 5 6 7 7 1 2 2 3 5 6 6 1 1 2 3 5 5 1 2 3 3 1 2 2 1 1 (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Mayank Pandey, Squarefree numbers in short intervals, arXiv preprint (2024). arXiv:2401.13981 [math.NT]
Crossrefs
Programs
-
Maple
A070321 := proc(n) local a; for a from n by -1 do if issqrfree(a) then return a; end if; end do: end proc: seq(A070321(n),n=1..100) ; # R. J. Mathar, May 25 2023
-
Mathematica
a[n_] :=For[ k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2013 *) gsfn[n_]:=Module[{k=n},While[!SquareFreeQ[k],k--];k]; Array[gsfn,80] (* Harvey P. Dale, Mar 27 2013 *)
-
PARI
a(n) = while (! issquarefree(n), n--); n; \\ Michel Marcus, Mar 18 2017
-
Python
from itertools import count from sympy import factorint def A070321(n): return next(m for m in count(n,-1) if max(factorint(m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024
Formula
a(n) = n - o(n^(1/5)) by a result of Pandey. - Charles R Greathouse IV, Dec 04 2024
Extensions
New description from Reinhard Zumkeller, Oct 03 2002
Comments