cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090872 a(n) is the smallest number m greater than 1 such that m^(2^k)+1 for k=0,1,...,n are primes.

Original entry on oeis.org

2, 2, 2, 2, 2, 7072833120, 2072005925466, 240164550712338756
Offset: 0

Views

Author

Farideh Firoozbakht, Jan 31 2004

Keywords

Comments

The first five terms of this sequence correspond to Fermat primes.
Note that 7072833120 is not the smallest base to give at least six possibly nonconsecutive k values. For example, 292582836^(2^k) + 1 is prime for k = 0,1,2,3,4,7. - Jeppe Stig Nielsen, Sep 18 2022

Examples

			a(5)=7072833120 because 7072833120^2^k+1 for k=0,1,2,3,4,5 are primes.
		

Crossrefs

All solutions for fixed n: A006093 (n=0), A070689 (n=1), A070325 (n=2), A070655 (n=3), A070694 (n=4), A235390 (n=5), A335805 (n=6), A337364 (n=7).

Extensions

a(6) from Jens Kruse Andersen, May 06 2007
a(7) from Kellen Shenton, Aug 13 2020

A070655 Numbers k such that k+1, k^2+1, k^4+1 and k^8+1 are primes.

Original entry on oeis.org

1, 2, 4, 19380, 285090, 337536, 448630, 532390, 534430, 545140, 547536, 585106, 602056, 677076, 876180, 1007386, 1030200, 1331950, 1462000, 1736346, 1878790, 1883856, 2071960, 2194666, 2240890, 2763010, 2824720, 3018606, 3114996
Offset: 1

Views

Author

Robert G. Wilson v, May 13 2002

Keywords

Crossrefs

Cf. A070325.

Programs

  • Mathematica
    Do[ If[ PrimeQ[n + 1] && PrimeQ[n^2 + 1] && PrimeQ[n^4 + 1] && PrimeQ[n^8 + 1], Print[n]], {n, 1, 10^7}]

A235390 Numbers k such that k^(2^i)+1 are primes for i=0...5.

Original entry on oeis.org

1, 7072833120, 9736020616, 12852419340, 36632235070, 41452651506, 44619665520, 53569833730, 54673378956, 66032908020, 69449109580, 69936419290, 82549220670, 99574135650, 106362659256, 108208833756, 113366066976, 136032409906, 167385272500, 174963279540, 195763339776
Offset: 1

Views

Author

Alex Ratushnyak, Jan 09 2014

Keywords

Comments

A subsequence of A070694.
Conjecture: the sequence is infinite.
For n=4 and n=9, a(n)*2+1 is also a prime.
The first term greater than 1 such that k^(2^6) + 1 is also prime, is a(148) = 2072005925466, see A335805. - Jeppe Stig Nielsen, Aug 18 2020

Examples

			k=7072833120 is in the sequence because the following are six primes: 7072833121, 7072833120^2+1, k^4+1, k^8+1, k^16+1, k^32+1.
		

Crossrefs

Extensions

a(1)=1 inserted by Jeppe Stig Nielsen, Aug 11 2020

A335805 Numbers b such that b^(2^i) + 1 is prime for i = 0...6.

Original entry on oeis.org

1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 14 2020

Keywords

Comments

Explicitly, for each b, the seven numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, and b^64+1 must be primes (generalized Fermat primes).
The first term greater than 1 such that b^(2^7) + 1 is also prime, is 240164550712338756, see A337364. - Jeppe Stig Nielsen, Aug 25 2020

Crossrefs

A337364 Numbers b such that b^(2^i) + 1 is prime for i = 0...7.

Original entry on oeis.org

1, 240164550712338756, 3686834112771042790, 6470860179642426900, 7529068955648085700, 10300630358100537120, 16776829808789151280, 17622040391833711780, 19344979062504927000, 23949099004395080026, 25348938242408650240, 30262840543567048476, 35628481193915651646
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 25 2020

Keywords

Comments

Explicitly, for each b, the eight numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, b^64+1, and b^128+1 must be primes (generalized Fermat primes).

Crossrefs

Extensions

a(10)-a(12) from Jeppe Stig Nielsen, Sep 04 2020
a(13) found by Rob Gahan added by Jeppe Stig Nielsen, Feb 15 2021

A237191 Numbers k such that k+1, k+3, k^2+1, k^2+3, k^4+1, k^4+3 are six primes.

Original entry on oeis.org

2, 520360, 14320216, 30527896, 119668186, 120506050, 131448430, 142493926, 211158676, 254574706, 276368680, 306216940, 315122416, 421132180, 472731400, 506213890, 540271396, 616078786, 629310346, 646308250, 741176296, 752897860, 800587480, 851425030, 897745996
Offset: 1

Views

Author

Alex Ratushnyak, Feb 04 2014

Keywords

Crossrefs

A subsequence of A067662, A070325, A070689, A080149.

Programs

  • Python
    from sympy import isprime
    for n in range(0,1000000000,2):
        if isprime(n+1) and isprime(n*n+1) and isprime(n**4+1):
            if isprime(n+3) and isprime(n*n+3) and isprime(n**4+3):
                print(n, end=', ')

A188698 Numbers k such that 1+k, 1+k^2, 1+k^4 and 1+k^16 are all prime.

Original entry on oeis.org

1, 2, 690, 33190, 57106, 77140, 135606, 258990, 303430, 331140, 337536, 359230, 375646, 455526, 458326, 493396, 548226, 550540, 585106, 602056, 659250, 680830, 742306, 800406, 827680, 870240, 918340, 925390, 968320, 1203100, 1273890, 1455526, 1497576, 1605016
Offset: 1

Views

Author

Zak Seidov, Apr 09 2011

Keywords

Comments

Subsequence of A070325, which itself is a subsequence of A070689, which itself is a subsequence of A006093.

Examples

			a(3) = 690 = A070689(32) = A070325(11) = A006093(125).
		

Programs

  • Magma
    [n: n in [0..7000000]| IsPrime(1+n) and IsPrime(1+n^2) and IsPrime(1+n^4) and IsPrime(1+n^16)]; // Vincenzo Librandi, Apr 11 2011

Extensions

a(1) = 1 prepended by Vincenzo Librandi, Apr 11 2011
Showing 1-7 of 7 results.