A090872
a(n) is the smallest number m greater than 1 such that m^(2^k)+1 for k=0,1,...,n are primes.
Original entry on oeis.org
2, 2, 2, 2, 2, 7072833120, 2072005925466, 240164550712338756
Offset: 0
a(5)=7072833120 because 7072833120^2^k+1 for k=0,1,2,3,4,5 are primes.
A070655
Numbers k such that k+1, k^2+1, k^4+1 and k^8+1 are primes.
Original entry on oeis.org
1, 2, 4, 19380, 285090, 337536, 448630, 532390, 534430, 545140, 547536, 585106, 602056, 677076, 876180, 1007386, 1030200, 1331950, 1462000, 1736346, 1878790, 1883856, 2071960, 2194666, 2240890, 2763010, 2824720, 3018606, 3114996
Offset: 1
-
Do[ If[ PrimeQ[n + 1] && PrimeQ[n^2 + 1] && PrimeQ[n^4 + 1] && PrimeQ[n^8 + 1], Print[n]], {n, 1, 10^7}]
A235390
Numbers k such that k^(2^i)+1 are primes for i=0...5.
Original entry on oeis.org
1, 7072833120, 9736020616, 12852419340, 36632235070, 41452651506, 44619665520, 53569833730, 54673378956, 66032908020, 69449109580, 69936419290, 82549220670, 99574135650, 106362659256, 108208833756, 113366066976, 136032409906, 167385272500, 174963279540, 195763339776
Offset: 1
k=7072833120 is in the sequence because the following are six primes: 7072833121, 7072833120^2+1, k^4+1, k^8+1, k^16+1, k^32+1.
A335805
Numbers b such that b^(2^i) + 1 is prime for i = 0...6.
Original entry on oeis.org
1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1
A337364
Numbers b such that b^(2^i) + 1 is prime for i = 0...7.
Original entry on oeis.org
1, 240164550712338756, 3686834112771042790, 6470860179642426900, 7529068955648085700, 10300630358100537120, 16776829808789151280, 17622040391833711780, 19344979062504927000, 23949099004395080026, 25348938242408650240, 30262840543567048476, 35628481193915651646
Offset: 1
A237191
Numbers k such that k+1, k+3, k^2+1, k^2+3, k^4+1, k^4+3 are six primes.
Original entry on oeis.org
2, 520360, 14320216, 30527896, 119668186, 120506050, 131448430, 142493926, 211158676, 254574706, 276368680, 306216940, 315122416, 421132180, 472731400, 506213890, 540271396, 616078786, 629310346, 646308250, 741176296, 752897860, 800587480, 851425030, 897745996
Offset: 1
-
from sympy import isprime
for n in range(0,1000000000,2):
if isprime(n+1) and isprime(n*n+1) and isprime(n**4+1):
if isprime(n+3) and isprime(n*n+3) and isprime(n**4+3):
print(n, end=', ')
A188698
Numbers k such that 1+k, 1+k^2, 1+k^4 and 1+k^16 are all prime.
Original entry on oeis.org
1, 2, 690, 33190, 57106, 77140, 135606, 258990, 303430, 331140, 337536, 359230, 375646, 455526, 458326, 493396, 548226, 550540, 585106, 602056, 659250, 680830, 742306, 800406, 827680, 870240, 918340, 925390, 968320, 1203100, 1273890, 1455526, 1497576, 1605016
Offset: 1
a(3) = 690 = A070689(32) = A070325(11) = A006093(125).
Showing 1-7 of 7 results.
Comments