A070338 a(n) = 2^n mod 33.
1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8, 16, 32, 31, 29, 25, 17, 1, 2, 4, 8
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1).
Programs
-
GAP
List([0..83],n->PowerMod(2,n,33)); # Muniru A Asiru, Jan 30 2019
-
Mathematica
Table[Mod[2^n, 33], {n, 0, 79}] (* Alonso del Arte, Jan 12 2013 *) PowerMod[2, Range[0, 50], 33] (* G. C. Greubel, Mar 13 2016 *) LinearRecurrence[{1,0,0,0,-1,1},{1,2,4,8,16,32},90] (* Harvey P. Dale, Jun 26 2017 *)
-
PARI
a(n)=lift(Mod(2,33)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(2,n,33)for n in range(0,74)] # Zerinvary Lajos, Nov 03 2009
Comments