A070371 a(n) = 5^n mod 17.
1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 8, 6, 13, 14
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,-1,1). [From _R. J. Mathar_, Apr 20 2010]
Crossrefs
Cf. A000351.
Programs
-
Magma
&cat[[1,5,8,6,13,14,2,10,16,12,9,11,4,3,15,7]^^5]; // Vincenzo Librandi, Mar 06 2016
-
Mathematica
PowerMod[5,Range[0,90],17] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,-1,1},{1,5,8,6,13,14,2,10,16},90] (* Harvey P. Dale, Jun 26 2013 *) Table[Mod[5^n, 17], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *)
-
PARI
a(n) = lift(Mod(5, 17)^n); \\ Michel Marcus, Mar 05 2016
-
PARI
x='x+O('x^100); Vec((-1-4*x-3*x^2+2*x^3-7*x^4-x^5+12*x^6-8*x^7-7*x^8)/((x-1)*(1+x^8))) \\ Altug Alkan, Mar 05 2016
-
Sage
[power_mod(5,n,17) for n in range(0,86)] # Zerinvary Lajos, Nov 26 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9).
G.f.: (-1-4*x-3*x^2+2*x^3-7*x^4-x^5+12*x^6-8*x^7-7*x^8) / ((x-1)*(1+x^8)). (End)
a(n) = a(n-16). - G. C. Greubel, Mar 05 2016
Comments