cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070409 a(n) = 7^n mod 23.

Original entry on oeis.org

1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

Periodic with period 22. - Joerg Arndt, Feb 24 2015

Programs

  • Magma
    I:=[1,7,3,21,9,17,4,5,12,15,13,22]; [n le 12 select I[n] else Self(n-1)-Self(n-11)+Self(n-12): n in [1..70]]; // Vincenzo Librandi, Feb 26 2015
    
  • Magma
    [Modexp(7, n, 23): n in [0..100]]; // Bruno Berselli, Mar 22 2016
  • Mathematica
    Table[PowerMod[7, n, 23], {n, 0, 79}] (* Alonso del Arte, Feb 23 2015 *)
    CoefficientList[Series[(- 1 - 6 x + 4 x^2 - 18 x^3 + 12 x^4 - 8 x^5 + 13 x^6 - x^7 - 7 x^8 - 3 x^9 + 2 x^10 - 10 x^11) / ((x - 1) (1 + x) (x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 26 2015 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1},{1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22},80] (* Ray Chandler, Aug 27 2015 *)
  • PARI
    a(n) = lift(Mod(7, 23)^n); \\ Michel Marcus, Feb 23 2015
    
  • Sage
    [power_mod(7,n,23) for n in range(0,80)] # Zerinvary Lajos, Nov 27 2009
    

Formula

From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-11) + a(n-12).
G.f.: ( -1 - 6*x + 4*x^2 - 18*x^3 + 12*x^4 - 8*x^5 + 13*x^6 - x^7 - 7*x^8 - 3*x^9 + 2*x^10 - 10*x^11 ) / ( (x-1)*(1+x)*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) ). (End)
a(n) = A000420(n) mod 23. - Michel Marcus, Feb 24 2015