A070409 a(n) = 7^n mod 23.
1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Magma
I:=[1,7,3,21,9,17,4,5,12,15,13,22]; [n le 12 select I[n] else Self(n-1)-Self(n-11)+Self(n-12): n in [1..70]]; // Vincenzo Librandi, Feb 26 2015
-
Magma
[Modexp(7, n, 23): n in [0..100]]; // Bruno Berselli, Mar 22 2016
-
Mathematica
Table[PowerMod[7, n, 23], {n, 0, 79}] (* Alonso del Arte, Feb 23 2015 *) CoefficientList[Series[(- 1 - 6 x + 4 x^2 - 18 x^3 + 12 x^4 - 8 x^5 + 13 x^6 - x^7 - 7 x^8 - 3 x^9 + 2 x^10 - 10 x^11) / ((x - 1) (1 + x) (x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 26 2015 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1},{1, 7, 3, 21, 9, 17, 4, 5, 12, 15, 13, 22},80] (* Ray Chandler, Aug 27 2015 *)
-
PARI
a(n) = lift(Mod(7, 23)^n); \\ Michel Marcus, Feb 23 2015
-
Sage
[power_mod(7,n,23) for n in range(0,80)] # Zerinvary Lajos, Nov 27 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-11) + a(n-12).
G.f.: ( -1 - 6*x + 4*x^2 - 18*x^3 + 12*x^4 - 8*x^5 + 13*x^6 - x^7 - 7*x^8 - 3*x^9 + 2*x^10 - 10*x^11 ) / ( (x-1)*(1+x)*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) ). (End)
a(n) = A000420(n) mod 23. - Michel Marcus, Feb 24 2015
Comments