A070442 a(n) = n^2 mod 20.
0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16, 5, 16, 9, 4, 1, 0, 1, 4, 9, 16
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1).
Crossrefs
Programs
-
Mathematica
Table[Mod[n^2,20],{n,0,200}] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2011 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 4, 9, 16, 5, 16, 9, 4, 1},95] (* Ray Chandler, Aug 26 2015 *) PowerMod[Range[0,100],2,20] (* or *) PadRight[{},120,{0,1,4,9,16,5,16,9,4,1}] (* Harvey P. Dale, Jan 06 2019 *)
-
PARI
a(n)=n^2%20 \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
[power_mod(n,10,20) for n in range(0, 88)] # Zerinvary Lajos, Oct 31 2009
Formula
From Reinhard Zumkeller, Apr 24 2009: (Start)
a(m*n) = a(m)*a(n) mod 20.
a(5*n+k) = a(5*n-k) for k <= 5*n.
a(n+10) = a(n). (End)
G.f. -x*(1+4*x+9*x^2+16*x^3+5*x^4+16*x^5+9*x^6+4*x^7+x^8) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ). - R. J. Mathar, Aug 27 2013
Comments