A070477 a(n) = n^3 mod 15.
0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Magma
[Modexp(n, 3, 15): n in [0..100]]; // Vincenzo Librandi, Mar 28 2016
-
Mathematica
PowerMod[Range[0,90],3,15] (* or *) PadRight[{},90,{0,1,8,12,4,5,6,13,2,9,10,11,3,7,14}] (* Harvey P. Dale, Jan 27 2014 *) Table[Mod[n^3, 15], {n, 0, 100}] (* Vincenzo Librandi, Jun 19 2014 *)
-
PARI
a(n)=n^3%15 \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[power_mod(n,3,15) for n in range(0, 90)] # Zerinvary Lajos, Oct 29 2009
Formula
From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-15).
G.f.: (-x -8*x^2 -12*x^3 -4*x^4 -5*x^5 -6*x^6 -13*x^7 -2*x^8 -9*x^9 - 10*x^10 -11*x^11 -3*x^12 -7*x^13 -14*x^14)/(-1 + x^15). (End)
Comments