cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070514 Final digit of n^4: a(n) = n^4 mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Comments

Decimal expansion of 538853870/3333333333. - Alexander R. Povolotsky, Mar 09 2013

Crossrefs

Cf. A010879, A008959, A008960. - Doug Bell, Jun 15 2015

Programs

Formula

a(n) = n^k mod 10; for k > 0 where k mod 4 = 0. - Doug Bell, Jun 15 2015
From G. C. Greubel, Apr 01 2016: (Start)
a(n) = a(n-10).
a(2*n) = 6*A011558(n).
G.f.: (x +6*x^2 +x^3 +6*x^4 +5*x^5 +6*x^6 +x^7 +6*x^8 +x^9)/(1 - x^10). (End)