cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A070003 Numbers divisible by the square of their largest prime factor.

Original entry on oeis.org

4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 75, 81, 98, 100, 108, 121, 125, 128, 144, 147, 150, 162, 169, 196, 200, 216, 225, 242, 243, 245, 250, 256, 288, 289, 294, 300, 324, 338, 343, 361, 363, 375, 392, 400, 432, 441, 450, 484, 486, 490, 500, 507
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers n such that P(phi(n)) - phi(P(n)) = 1, where P(x) is the largest prime factor of x. P(phi(n)) - phi(P(n)) = A006530(A000010(n)) - A000010(A006530(n)).
Numbers n such that the value of the commutator of phi and P functions at n is -1.
Equivalently, n such that n and phi(n) have the same largest prime factor since Phi(p) = p-1 if p is prime. - Benoit Cloitre, Jun 08 2002
Since n is divisible by P(n)^2, n cannot divide P(n)! and so A057109 is a supersequence. Hence all A002034(a(n)) are composite. - Jonathan Sondow, Dec 28 2004
A225546 defines a self-inverse bijection between this sequence and A335740, considered as sets. - Peter Munn, Jul 19 2020

Crossrefs

Subsequence of A057109, A122145.
Complement within A020725 of A102750.
Related to A335740 via A225546.
A195212 is a subsequence.
Cf. A319988 (characteristic function). Positions of odd terms > 1 in A122111.

Programs

  • Maple
    isA070003 := proc(n)
        if modp(n,A006530(n)^2) = 0 then # code re-use
            true;
        else
            false;
        end if;
    end proc:
    A070003 := proc(n)
        option remember ;
        if n =1 then
            4;
        else
            for a from procname(n-1)+1 do
                if isA070003(a) then
                    return a
                end if;
            end do:
        end if;
    end proc:
    seq( A070003(n),n=1..80) ; # R. J. Mathar, Jun 27 2024
  • Mathematica
    p[n_] := FactorInteger[n][[-1, 1]]; ep[n_] := EulerPhi[n]; fQ[n_] := p[ep[n]] == 1 + ep[p[n]]; Select[ Range[ 510], fQ] (* Robert G. Wilson v, Mar 26 2012 *)
    Select[Range[500], FactorInteger[#][[-1,2]] > 1 &] (* T. D. Noe, Dec 06 2012 *)
  • PARI
    for(n=3,1000,if(component(component(factor(n),1),omega(n))==component(component(factor(eulerphi(n)),1),omega(eulerphi(n))),print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)[,2]);f[#f]>1 \\ Charles R Greathouse IV, Mar 21 2012
    
  • PARI
    sm(lim,mx)=if(mx==2,return(vector(log(lim+.5)\log(2)+1,i,1<<(i-1))));my(v=[1]);forprime(p=2,min(mx,lim),v=concat(v,p*sm(lim\p,p)));vecsort(v)
    list(lim)=my(v=[]);forprime(p=2,sqrt(lim),v=concat(v,p^2*sm(lim\p^2,p)));vecsort(v) \\ Charles R Greathouse IV, Mar 27 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return f[max(f)] >= 2
    print(list(filter(ok, range(4, 508)))) # Michael S. Branicky, Apr 08 2021

Formula

Erdős proved that there are x * exp(-(1 + o(1))sqrt(log x log log x)) members of this sequence up to x. - Charles R Greathouse IV, Mar 26 2012

Extensions

New name from Jonathan Sondow and Charles R Greathouse IV, Mar 27 2012

A070812 a(n) = phi(gpf(n)) - gpf(phi(n)) = A000010(A006530(n)) - A006530(A000010(n)).

Original entry on oeis.org

0, -1, 2, 0, 3, -1, -1, 2, 5, 0, 9, 3, 2, -1, 14, -1, 15, 2, 3, 5, 11, 0, -1, 9, -1, 3, 21, 2, 25, -1, 5, 14, 3, -1, 33, 15, 9, 2, 35, 3, 35, 5, 1, 11, 23, 0, -1, -1, 14, 9, 39, -1, 5, 3, 15, 21, 29, 2, 55, 25, 3, -1, 9, 5, 55, 14, 11, 3, 63, -1, 69, 33, -1, 15, 5, 9, 65, 2, -1, 35, 41, 3, 14, 35, 21, 5, 77, 1, 9, 11, 25, 23, 15, 0, 93, -1, 5
Offset: 3

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

Value of commutator[A000010, A006530] at n.

Examples

			Cases of n when a(n) = 1, -1, 2 or 0 are listed in A070002, A070003, A070004, A007283 respectively. Further regular solutions: if a(n)=3, then n=7k, where k has prime divisors < 7; if a(n)=5, then n=11k, where k has no prime divisors >=11; if a(n)=25, then mostly (not always!) n=31k ...
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Table[EulerPhi[pf[u]]-pf[EulerPhi[u]], {u, 3, 128}]
  • PARI
    gpf(n)=my(f=factor(n)[,1]);f[#f]
    a(n)=gpf(n)-gpf(eulerphi(n))-1 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = A070777(n) - A068211(n).

A070004 Numbers of the form 5*2^n or 5*3*2^n; a(n) = 5*A029744(n).

Original entry on oeis.org

5, 10, 15, 20, 30, 40, 60, 80, 120, 160, 240, 320, 480, 640, 960, 1280, 1920, 2560, 3840, 5120, 7680, 10240, 15360, 20480, 30720, 40960, 61440, 81920, 122880, 163840, 245760, 327680, 491520, 655360, 983040, 1310720, 1966080, 2621440
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Old name was: Numbers n such that phi(P(n)) - P(phi(n)) = 2, where P(x)=largest prime factor of x, or A000010(A006530(n))-A006530(A000010(n))=2.
Solutions to phi(P(x))-P(phi(x))=c, presence or absence of special prime factors in x are usually derivable.

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2]; Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 2], Print[n]], {n, 3, 1000000}]
    Union[Flatten[Table[2^n {5,15},{n,0,20}]]] (* or *) Join[ {5}, LinearRecurrence[ {0,2},{10,15},40]] (* Harvey P. Dale, Dec 23 2014 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    is(n)=eulerphi(gpf(n))-gpf(eulerphi(n))==2 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = 5*A029744(n); numbers of the forms 5*2^n and 15*2^n.
G.f.: 5*x*(x+1)^2/(1-2*x^2). - Ralf Stephan, Jul 15 2013
Sum_{n>=1} 1/a(n) = 8/15. - Amiram Eldar, Jan 02 2021

Extensions

Simpler name by Joerg Arndt, Jul 16 2013

A070002 Numbers k such that phi(P(k)) - P(phi(k)) = 1, where P(k) is the largest prime factor of k.

Original entry on oeis.org

45, 90, 135, 175, 180, 270, 350, 360, 405, 525, 540, 700, 720, 810, 875, 1050, 1080, 1215, 1400, 1440, 1573, 1575, 1620, 1750, 2100, 2160, 2430, 2625, 2800, 2880, 3146, 3150, 3240, 3500, 3645, 4200, 4320, 4375, 4719, 4725, 4860, 5250, 5491, 5600, 5760
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

phi(P(k)) - P(phi(k)) = A000010(A006530(k)) - A006530(A000010(k)) = 1, where P(k) = largest prime factor of k. Value of commutator of phi and P functions at k equals 1.
Many but not all terms are divisible by 5.

Examples

			m = 77077 = 7*7*11*11*13*13 is here because P(m) = 13, phi(P(13)) = 12, phi(m) = 55440 = 2*2*2*2*3*3*5*7*11 with P(Phi(55440)) = 13 and the difference is 13 - 12 = 1.
		

Crossrefs

Programs

  • Mathematica
    pf[n_] := FactorInteger[n][[-1, 1]];
    Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 1], Print[n]], {n, 3, 100000}]

A070816 Solutions to phi(gpf(x)) - gpf(phi(x)) = 65534 = c are special multiples of 65537, x=65537*k, where the largest prime factors of factor k were observed in {2, 3, 5, 17, 257}.

Original entry on oeis.org

65537, 131074, 196611, 262148, 327685, 393222, 524296, 655370, 786444, 983055, 1048592, 1114129, 1310740, 1572888, 1966110, 2097184, 2228258, 2621480, 3145776, 3342387, 3932220, 4194368, 4456516, 5242960, 5570645, 6291552
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

See solutions to other even cases of c [=A070813]: A007283 for 0, A070004 for 2, A070814 for 14, A070815 for 254.

Examples

			For n = 572662306 = 2*17*257*65537, gpf(n) = 65537, phi(n) = 268435456, commutator[572662306] = phi(65537) - gpf(268435456) = 65536 - 2 = 65534.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 65534], Print[{n, n/65537, pf[n/65537]}]], {n, 3, 1000000}] (* Terms of sequence are n *)

A070814 Solutions to phi(gpf(x)) - gpf(phi(x)) = 14 = c are special multiples of 17, x = 17k, where greatest prime factors of factor k were observed from {2, 3, 5}, i.e., it is smaller than 17. See solutions to other even cases of c (=A070813): A007283 for 0, A070004 for 2, A070815 for 254, A070816 for 65534. Gpf = greatest prime factor.

Original entry on oeis.org

17, 34, 51, 68, 85, 102, 136, 170, 204, 255, 272, 340, 408, 510, 544, 680, 816, 1020, 1088, 1360, 1632, 2040, 2176, 2720, 3264, 4080, 4352, 5440, 6528, 8160, 8704, 10880, 13056, 16320, 17408, 21760, 26112, 32640, 34816, 43520, 52224, 65280
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

For n > 10, a(n) = 2a(n-4). First, it is easy to show that with i >= 0 and k,m in {0,1}, a(n) are of the form 2^i*3^k*5^m. Factoring this sequence reveals the regular pattern 2^i, 2^(i-2)*5, 2^(i-1)*3, 2^(i-3)*3*5, 2^(i+1), ... which obviously has the property a(n) = 2a(n-4) for n > 10. - Lambert Herrgesell (lambert.herrgesell(AT)googlemail.com), Jan 09 2007

Examples

			For n = 32640 = 128*3*5*17, gpf(n) = 17, phi(n) = 16384, commutator[32640] = phi(17) - gpf(16384) = 16 - 2 = 14.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 14], Print[{n, n/17, pf[n/17]}]], {n, 3, 1000000}] (* Terms of sequence are n *)

Formula

For n > 10, a(n) = 2a(n-4) (conjectured). - Ralf Stephan, May 09 2004

A070815 Solutions to phi(gpf(x)) - gpf(phi(x)) = 254 = c are special multiples of 257, x = 257k, where largest prime factors of factor k were observed from {2, 3, 5, 17}. See solutions to other even cases of c (=A070813): A007283 for 0, A070004 for 2, A070814 for 14, A070816 for 65534.

Original entry on oeis.org

257, 514, 771, 1028, 1285, 1542, 2056, 2570, 3084, 3855, 4112, 4369, 5140, 6168, 7710, 8224, 8738, 10280, 12336, 13107, 15420, 16448, 17476, 20560, 21845, 24672, 26214, 30840, 32896, 34952, 41120, 43690, 49344, 52428, 61680, 65535, 65792
Offset: 1

Views

Author

Labos Elemer, May 09 2002

Keywords

Examples

			For n = 87380 = 4*5*17*257, gpf(n) = 257, phi(n) = 65536, commutator[87380] = phi(257) - gpf(65536) = 256 - 2 = 254.
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 254], Print[{n, n/257, pf[n/257]}]], {n, 3, 1000000}] (* Terms of sequence are n *)

A130027 A130026 * A054525.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 4, 0, 0, 0, 1, -2, 4, 3, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 1, 2, 0, 4, 0, 0, 0, 1, 2, 0, 6, 0, 0, 0, 0, 0, 1, -4, 8, 0, 0, 5, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, May 02 2007

Keywords

Comments

Row sums = (1, 2, 3, ...). Left column = signed version of A070777.

Examples

			First few rows of the triangle:
   1;
   1, 1;
   2, 0, 1;
   1, 2, 0, 1;
   4, 0, 0, 0, 1;
  -2, 4, 3, 0, 0, 1;
   6, 0, 0, 0, 0, 0, 1;
   1, 2, 0, 4, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

A130026 * A054525 as infinite lower triangular matrices.

A088659 a(n) = n*(p-1) where p is the largest prime factor of n.

Original entry on oeis.org

2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 60, 16, 272, 36, 342, 80, 126, 220, 506, 48, 100, 312, 54, 168, 812, 120, 930, 32, 330, 544, 210, 72, 1332, 684, 468, 160, 1640, 252, 1806, 440, 180, 1012, 2162, 96, 294, 200, 816, 624, 2756, 108, 550, 336, 1026
Offset: 2

Views

Author

Benoit Cloitre, Nov 21 2003

Keywords

Comments

It is conjectured that sequence gives period length of the periodic sequence {A088957(k) mod n}_{k>n}.
The records of this sequence are given by A036689 (product of a prime and the previous number). - Michel Marcus, May 19 2015

Programs

  • Maple
    seq(n*(max(numtheory:-factorset(n))-1), n=2..100); # Robert Israel, May 19 2015
  • Mathematica
    Table[n*(FactorInteger[n][[-1, 1]] - 1), {n, 2, 57}] (* Ivan Neretin, May 19 2015 *)
  • PARI
    a(n)=n*(component(factor(n),1)-1)

Formula

For p the k-th prime, a(p) = A036689(k). - Michel Marcus, May 19 2015
a(n) = n*A070777(n). - Michel Marcus, May 19 2015

A128980 A054525 * A129691(unsigned).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 29 2007

Keywords

Comments

Row sums = A070777: (1, 1, 2, 1, 4, 2, 6, 1, 2, 4, ...). A129691 = the unsigned inverse of A054523.

Examples

			First few rows of the triangle:
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  3, 0, 0, 0, 1;
  0, 1, 0, 0, 0, 1;
  5, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 1, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Moebius transform of A129691
Showing 1-10 of 10 results.