cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070856 Numbers n such that sigma(reverse(n)) = phi(n).

Original entry on oeis.org

1, 120, 260, 450, 861, 1411, 1541, 1550, 7372, 7957, 8393, 9312, 13811, 14840, 20440, 26060, 38323, 41550, 46990, 49813, 51412, 61050, 77695, 78625, 86691, 94604, 94632, 138631, 143520, 166331, 169360, 176820, 182750, 208150, 236220, 236840, 270650
Offset: 1

Views

Author

Joseph L. Pe, May 16 2002

Keywords

Examples

			sigma(reverse(120)) = sigma(21) = 32 = phi(120), so 120 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 10^6 ],EulerPhi[ # ]==DivisorSigma[ 1,FromDigits[ Reverse[ IntegerDigits[ # ] ] ] ]& ]

Extensions

Extended by Ray Chandler, Feb 10 2009

A252255 Numbers n such that sigma(Rev(phi(n))) = phi(Rev(sigma(n))), where sigma is the sum of divisors and phi the Euler totient function.

Original entry on oeis.org

1, 14, 61, 966, 1428, 9174, 15642, 19934, 22155, 27075, 36650, 48731, 51095, 54184, 57902, 59711, 61039, 89276, 98645, 113080, 126850, 140283, 142149, 154670, 165822, 190908, 197705, 198712, 202096, 203107, 247268, 274368, 274716, 307836, 311925, 331037, 366740
Offset: 1

Views

Author

Paolo P. Lava, Dec 16 2014

Keywords

Examples

			phi(14) = 6, Rev(6) = 6 and sigma(6) = 12;
sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w;
    for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end:
    P:=proc(q) local a, b, k; global n; for n from 1 to q do
    if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12);
  • Mathematica
    Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Apr 15 2017 *)
Showing 1-2 of 2 results.