cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070858 Smallest prime == 1 mod L, where L = LCM of 1 to n.

Original entry on oeis.org

2, 3, 7, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561, 10708457761, 10708457761, 26771144401, 26771144401, 401567166001, 401567166001, 18632716502401, 18632716502401
Offset: 1

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Comments

Beginning with 3, smallest prime p = a(n) such that p + k is divisible by k + 1 for each k = 1, 2, ..., n. For example: 61 --> 62, 63, 64, 65 and 66 are divisible respectively by 2, 3, 4, 5 and 6. - Robin Garcia, Jul 23 2012

Crossrefs

Programs

  • Maple
    A070858 := proc(n)
        local l,p;
        l := ilcm(seq(i,i=1..n)) ;
        for p from 1 by l do
            if isprime(p) then
                return p;
            end if;
        end do:
    end proc; # R. J. Mathar, Jun 25 2013
  • Mathematica
    a[n_] := Module[{m = 1, lcm = LCM @@ Range[n]}, While[!PrimeQ[m], m += lcm]; m]; Array[a, 30] (* Amiram Eldar, Mar 15 2025 *)
  • PARI
    a(n)=my(L=lcm(vector(n,i,i)),k=1);while(!ispseudoprime(k+=L),); k \\ Charles R Greathouse IV, Jun 25 2013

Extensions

More terms from Sascha Kurz, Feb 02 2003

A070835 Numbers n such that phi(reverse(n)) = sigma(n).

Original entry on oeis.org

1, 168, 1141, 1451, 2139, 2737, 3938, 7597, 11831, 19668, 21415, 23649, 31894, 32383, 40649, 52687, 59677, 121023, 133661, 136831, 146055, 148503, 172095, 190035, 245998, 276058, 302005, 302503, 307705, 396635, 410389, 504557, 516439, 539327, 571577
Offset: 1

Views

Author

Joseph L. Pe, May 16 2002

Keywords

Examples

			phi(reverse(168)) = phi(861) = 480 = sigma(168), so 168 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], EulerPhi[FromDigits[Reverse[IntegerDigits[ # ]]]] == DivisorSigma[1, # ] &]

Extensions

More terms from Labos Elemer, Jul 04 2003

A252255 Numbers n such that sigma(Rev(phi(n))) = phi(Rev(sigma(n))), where sigma is the sum of divisors and phi the Euler totient function.

Original entry on oeis.org

1, 14, 61, 966, 1428, 9174, 15642, 19934, 22155, 27075, 36650, 48731, 51095, 54184, 57902, 59711, 61039, 89276, 98645, 113080, 126850, 140283, 142149, 154670, 165822, 190908, 197705, 198712, 202096, 203107, 247268, 274368, 274716, 307836, 311925, 331037, 366740
Offset: 1

Views

Author

Paolo P. Lava, Dec 16 2014

Keywords

Examples

			phi(14) = 6, Rev(6) = 6 and sigma(6) = 12;
sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w;
    for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end:
    P:=proc(q) local a, b, k; global n; for n from 1 to q do
    if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12);
  • Mathematica
    Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Apr 15 2017 *)
Showing 1-3 of 3 results.