cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070875 Binary expansion is 1x100...0 where x = 0 or 1.

Original entry on oeis.org

5, 7, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1280, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376, 327680, 458752, 655360, 917504, 1310720, 1835008, 2621440
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2002

Keywords

Comments

A 2-automatic sequence. - Charles R Greathouse IV, Sep 24 2012
Third row in array A228405. - Richard R. Forberg, Sep 06 2013
Conjecture: a(n) = -1 + positions of the ones in A309019(n+2) - A002487(n+2). - George Beck, Mar 26 2022
Consecutive integers for which the number of its proper nondivisors of the form 2^k (k > 0) is 2; proper nondivisors are defined in A173540 (5 has two such nondivisors: 2 and 4, 7 has 2 and 4, 10 has 4 and 8, 14 has 4 and 8, 20 has 8 and 16,...). - Lechoslaw Ratajczak, Dec 17 2024

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n+3 else 2*Self(n-2): n in [1..39]]; // Bruno Berselli, Mar 01 2011
    
  • Mathematica
    Flatten@ NestList[ 2# &, {5, 7}, 19] (* Or *)
    CoefficientList[ Series[(5 + 7 x)/(1 - 2 x^2), {x, 0, 38}], x] (* Robert G. Wilson v, May 20 2002 *)
  • PARI
    a(n)=if(n%2,7,5)<<(n\2) \\ Charles R Greathouse IV, Sep 24 2012

Formula

A093873(a(n)) = 2. - Reinhard Zumkeller, Oct 13 2006
For n>1, a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
From Bruno Berselli, Mar 01 2011: (Start)
G.f.: (5+7*x)/(1-2*x^2).
a(n) = (6-(-1)^n)*2^((2*n+(-1)^n-1)/4). Therefore: a(n) = 5*2^(n/2) for n even, otherwise a(n) = 7*2^((n-1)/2).
a(n) = 2*a(n-2) for n>1. (End)
a(n+1) = A063757(n) + 6. - Philippe Deléham, Apr 13 2013
a(n) = sqrt(2*a(n-1) - (-2)^(n-1)). - Richard R. Forberg, Sep 06 2013
a(n+3) = a(n+2)*a(n+1)/a(n). - Richard R. Forberg, Sep 06 2013
For n>1, a(n) = 2*phi(a(n)) + phi(phi(a(n))). - Ivan Neretin, Feb 28 2016
a(2n) = A020714(n), a(2n+1) = A005009(n); for n>0. - Yosu Yurramendi, Jun 01 2016
From Ilya Gutkovskiy, Jun 02 2016: (Start)
E.g.f.: 7*sinh(sqrt(2)*x)/sqrt(2) + 5*cosh(sqrt(2)*x).
a(n) = 2^((n-3)/2)*(5*sqrt(2)*(1 + (-1)^n) + 7*(1 - (-1)^n)). (End)
Sum_{n>=0} 1/a(n) = 24/35. - Amiram Eldar, Mar 28 2022

Extensions

Extended by Robert G. Wilson v, May 20 2002