A070896 Determinant of the Cayley addition table of Z_{n}.
0, -1, -9, 96, 1250, -19440, -352947, 7340032, 172186884, -4500000000, -129687123005, 4086546038784, 139788510734886, -5159146026151936, -204350482177734375, 8646911284551352320, 389289535005334947848, -18580248257778920521728
Offset: 1
Keywords
Examples
a(3) = -9 because the determinant of {{0,1,2}, {1,2,0}, {2,0,1}} is -9.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..385
Programs
-
Magma
[(-1)^Floor(n/2)*(1/2)*(n-1)*n^(n-1): n in [1..50]]; // G. C. Greubel, Nov 14 2017
-
Mathematica
Table[(-1)^Floor[n/2]*(1/2)*(n - 1)*n^(n - 1), {n, 1, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
PARI
a(n)=(-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1)
Formula
a(n) = (-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1). - Benoit Cloitre, Nov 29 2002
Comments