cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070906 Every third Bell number A000110.

Original entry on oeis.org

1, 5, 203, 21147, 4213597, 1382958545, 682076806159, 474869816156751, 445958869294805289, 545717047936059989389, 846749014511809332450147, 1629595892846007606764728147, 3819714729894818339975525681317
Offset: 0

Views

Author

Benoit Cloitre, May 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ BellB[3*n], {n, 0, 12}] (* Jean-François Alcover, Dec 13 2012 *)
    BellB[3*Range[0,15]] (* Harvey P. Dale, Apr 19 2020 *)
  • PARI
    for(n=0,50,print1(round(sum(i=0,1000,i^(3*n)/(i)!)/exp(1)),","))
    
  • Python
    from itertools import accumulate, islice
    def A070906_gen(): # generator of terms
        yield 1
        blist, b = (1,), 1
        while True:
            for _ in range(3):
                blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b
    A070906_list = list(islice(A070906_gen(),30)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(3*n) for n in range(0, 13)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = Bell(3*n) = A000110(3*n). - Vladeta Jovovic, Feb 02 2003
a(n) = exp(-1)*Sum_{k>=0} k^(3n)/k!.
E.g.f.: exp(x*(d_z)^3)*(exp(exp(z)-1)) |_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs. (14) and (15) of the 1999 C. M. Bender reference given in A000110.
E.g.f.: exp(-1)*Sum_{n>=0} exp(n^3*x)/n!. - Vladeta Jovovic, Aug 24 2006