cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020557 Number of oriented multigraphs on n labeled arcs (with loops).

Original entry on oeis.org

1, 2, 15, 203, 4140, 115975, 4213597, 190899322, 10480142147, 682076806159, 51724158235372, 4506715738447323, 445958869294805289, 49631246523618756274, 6160539404599934652455, 846749014511809332450147, 128064670049908713818925644
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Cf. A070906. Bisection of Bell numbers A000110.
Cf. A099977.

Programs

  • Magma
    [Bell(2*n): n in [0..20]]; // Vincenzo Librandi, Feb 05 2017
    
  • Mathematica
    BellB[2 Range[0,20]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    for(n=0,50,print1(ceil(sum(i=0,1000,i^(2*n)/(i)!)/exp(1)),","))
    
  • Python
    from itertools import accumulate, islice
    def A020557_gen(): # generator of terms
        yield 1
        blist, b = (1,), 1
        while True:
            for _ in range(2):
                blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b
    A020557_list = list(islice(A020557_gen(),30)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(2*n) for n in range(0, 17)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = Bell(2*n) = A000110(2*n). - Vladeta Jovovic, Feb 02 2003
a(n) = exp(-1)*Sum_{k>=0} k^(2n)/k!. - Benoit Cloitre, May 19 2002
E.g.f.: exp(x*(d_z)^2)*(exp(exp(z)-1))|_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs.(14) and (15) of the 1999 C. M. Bender reference given in A000110.
E.g.f.: exp(-1)*Sum_{n>=0}exp(n^2*x)/n!. - Vladeta Jovovic, Aug 24 2006

A121293 a(n) = Bell(3*n+2).

Original entry on oeis.org

2, 52, 4140, 678570, 190899322, 82864869804, 51724158235372, 44152005855084346, 49631246523618756274, 71339801938860275191172, 128064670049908713818925644, 281600203019560266563340426570, 746289892095625330523099540639146
Offset: 0

Views

Author

Vladeta Jovovic, Aug 24 2006

Keywords

Comments

Even Bell numbers. A000110 except A134715. - Vladimir Reshetnikov, Nov 02 2015

Crossrefs

Programs

  • Maple
    seq(combinat:-bell(3*k+2), k=0..20); # Robert Israel, Nov 02 2015
  • Mathematica
    Table[ BellB[3*n + 2], {n, 0, 10}]  (* Jean-François Alcover, Dec 13 2012 *)
  • PARI
    a000110(n) = n!*polcoeff(exp(exp(x+x*O(x^n))-1), n);
    vector(20, n, n--; a000110(3*n+2)) \\ Altug Alkan, Nov 02 2015

Formula

E.g.f.: exp(-1)*Sum_{n>=0}(n^2*exp(n^3*x)/n!).

A121292 a(n) = Bell(3*n+1).

Original entry on oeis.org

1, 15, 877, 115975, 27644437, 10480142147, 5832742205057, 4506715738447323, 4638590332229999353, 6160539404599934652455, 10293358946226376485095653, 21195039388640360462388656799, 52868366208550447901945575624941, 157450588391204931289324344702531067
Offset: 0

Views

Author

Vladeta Jovovic, Aug 24 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ BellB[3*n + 1], {n, 0, 10}]  (* Jean-François Alcover, Dec 13 2012 *)
  • PARI
    a(n)={my(k=3*n+1); k!*polcoef(exp(exp(x + O(x*x^k)) - 1), k)} \\ Andrew Howroyd, Jan 08 2020

Formula

E.g.f.: exp(-1)*Sum_{n>=0} n*exp(n^3*x)/n!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 08 2020
Showing 1-3 of 3 results.