cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A208466 T(n,k) is the number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 15, 5, 15, 198, 203, 15, 52, 4041, 20746, 4140, 52, 203, 113458, 4132120, 4150760, 115975, 203, 877, 4132120, 1358524513, 10318694804, 1366230232, 4213597, 877, 4140, 187612143, 671329819215, 50996571454200, 51074630353994
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			Table starts:
....1...........2..................5.....................15
....2..........15................198...................4041
....5.........203..............20746................4132120
...15........4140............4150760............10318694804
...52......115975.........1366230232.........51074630353994
..203.....4213597.......675203938944.....441285917587055633
..877...190899322....470798015742024.6105599904286957450405
.4140.10480142147.442649055938121520
Some solutions for n=4 and k=3:
..0..1..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..0..0..0....0..0..2....2..0..0....2..0..1....1..1..0....0..2..0....0..0..0
..0..1..0....0..0..0....0..2..0....0..0..0....0..0..0....0..0..0....0..2..1
		

Crossrefs

Column 1 and row 1 are A000110.
Column 2 is A020557.

A216460 T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the even squares of an nXk array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 7, 5, 5, 2, 5, 15, 20, 15, 5, 5, 15, 203, 203, 322, 52, 15, 5, 52, 716, 3429, 4140, 1335, 203, 15, 15, 203, 17733, 83440, 580479, 115975, 36401, 877, 52, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 52
Offset: 1

Views

Author

R. H. Hardin Sep 07 2012

Keywords

Comments

Table starts
...1......1..........1............1...............2................2
...1......1..........1............2...............5...............15
...2......2..........7...........15.............203..............716
...2......5.........20..........203............3429............83440
...5.....15........322.........4140..........580479.........18171918
...5.....52.......1335.......115975........20880505.......6423127757
..15....203......36401......4213597......8195008751....3376465219485
..15....877.....192713....190899322....484968748793.2486327138729353
..52...4140....7712455..10480142147.348950573407587
..52..21147...49055292.682076806159
.203.115975.2659544320
.203.678570

Examples

			Some solutions for n=4 k=4
..0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x
..x..2..x..3....x..2..x..3....x..2..x..3....x..2..x..3....x..2..x..3
..4..x..5..x....0..x..4..x....4..x..5..x....3..x..0..x....0..x..1..x
..x..1..x..0....x..1..x..2....x..1..x..2....x..2..x..3....x..4..x..2
		

Crossrefs

Column 2 is A000110(n-1)
Column 4 is A020557(n-1)
Column 6 is A208051
Row 2 is A000110(n-2)
Odd squares: A216612

A216612 T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the odd squares of an nXk array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 5, 2, 2, 5, 15, 20, 15, 5, 2, 15, 41, 203, 67, 52, 5, 5, 52, 716, 3429, 4140, 1335, 203, 15, 5, 203, 2847, 83440, 83437, 115975, 6097, 877, 15, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 15, 4140
Offset: 1

Views

Author

R. H. Hardin Sep 10 2012

Keywords

Comments

Table starts
...1......1.........1............1..............1................2
...1......1.........1............2..............5...............15
...1......2.........2...........15.............41..............716
...2......5........20..........203...........3429............83440
...2.....15........67.........4140..........83437.........18171918
...5.....52......1335.......115975.......20880505.......6423127757
...5....203......6097......4213597......942420901....3376465219485
..15....877....192713....190899322...484968748793.2486327138729353
..15...4140...1094076..10480142147.33862631596393
..52..21147..49055292.682076806159
..52.115975.329588907
.203.678570

Examples

			Some solutions for n=4 k=4
..x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1
..2..x..3..x....2..x..3..x....1..x..2..x....2..x..3..x....1..x..2..x
..x..4..x..2....x..1..x..2....x..0..x..3....x..4..x..0....x..3..x..4
..5..x..6..x....4..x..3..x....2..x..1..x....2..x..5..x....0..x..2..x
		

Crossrefs

Column 2 is A000110(n-1)
Column 4 is A020557(n-1)
Column 6 is A208051
Row 2 is A000110(n-2)
Row 4 is A216462
Row 6 is A216464
Even squares: A216460

A326600 E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2019

Keywords

Examples

			E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
		

Crossrefs

Formula

E.g.f.: exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!.
E.g.f.: exp(-1-y) * Sum_{n>=0} exp(n^2*x) * exp( y*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
T(n,n) = A000110(n) for n >= 0, where A000110 is the Bell numbers.
T(n,0) = A000110(2*n) for n >= 0, where A000110 is the Bell numbers.
Sum_{k=0..n} T(n,k) * (-1)^k = A108459(n) for n >= 0.
Sum_{k=0..n} T(n,k) = A326433(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 2^k = A326434(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 3^k = A326435(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 4^k = A326436(n) for n >= 0.

A208054 T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
		

Crossrefs

Columns 1-5 are A000110(n-1), A020557(n-1), A208051, A208052, A208053.

A326433 E.g.f.: exp(-2) * Sum_{n>=0} (exp(n*x) + 1)^n / n!.

Original entry on oeis.org

1, 3, 29, 474, 11349, 366289, 15125300, 770762673, 47199596441, 3403242019876, 284281430425747, 27150503912943937, 2932403885598294838, 354869660881411722107, 47739034071736749352125, 7090201955561116768761250, 1155624866838027573814278801, 205611555585528308269669174557, 39746979329229607204823274477284
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 1, r = 1.

Examples

			E.g.f.: A(x) = 1 + 3*x + 29*x^2/2! + 474*x^3/3! + 11349*x^4/4! + 366289*x^5/5! + 15125300*x^6/6! + 770762673*x^7/7! + 47199596441*x^8/8! + 3403242019876*x^9/9! + 284281430425747*x^10/10! + 27150503912943937*x^11/11! + 2932403885598294838*x^12/12! + ...
such that
A(x) = exp(-2) * (1 + (exp(x) + 1) + (exp(2*x) + 1)^2/2! + (exp(3*x) + 1)^3/3! + (exp(4*x) + 1)^4/4! + (exp(5*x) + 1)^5/5! + (exp(6*x) + 1)^6/6! + ...)
also
A(x) = exp(-2) * (exp(1) + exp(x)*exp(exp(x)) + exp(4*x)*exp(exp(2*x))/2! + exp(9*x)*exp(exp(3*x))/3! + exp(16*x)*exp(exp(4*x))/4! + exp(25*x)*exp(exp(5*x))/5! + exp(36*x)*exp(exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-2) * sum(n=0,500, (exp(n*x +O(x^31)) + 1)^n/n! ) )))

Formula

E.g.f.: exp(-2) * Sum_{n>=0} (exp(n*x) + 1)^n / n!.
E.g.f.: exp(-2) * Sum_{n>=0} exp(n^2*x) * exp( exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n) = 0 (mod 2), a(3*n-1) = 1 (mod 2), and a(3*n-2) = 1 (mod 2) for n > 0.

A282010 Number of ways to partition Turan graph T(2n,n) into connected components.

Original entry on oeis.org

1, 1, 12, 163, 3411, 97164, 3576001, 163701521, 9064712524, 594288068019, 45352945127123, 3973596101084108, 395147058261233761, 44170986458602383553, 5504694207040057913164, 759355292729159336345955, 115228949414563130433140659, 19129024114529146183236435660
Offset: 0

Views

Author

Tengiz Gogoberidze, Feb 04 2017

Keywords

Comments

Turan graph T(2n,n) is also called cocktail party graph, so a(n) is the number of ways to seat n married couples for one or a few tables in such a manner that no table is fully occupied by any couple.
If we dissect (n-1)-skeleton of n-cube along some (n-2)-edges into some parts, then a(n) is the number of ways of such dissections.

Examples

			For n=1, Turan graph T(2,1) (2-empty graph) shall be partitioned into two singleton subgraphs (1 way), a(1)=1.
For n=2, Turan graph T(4,2) (square graph) shall be partitioned into: the same square graph (1 way) or one singleton + one 3-path subgraphs (4 ways) or two singleton + one 2-path subgraphs (4 ways) or two 2-path subgraphs (2 ways) or four singleton subgraphs (1 way), a(2)=12.
		

Crossrefs

Programs

  • Maple
    A282010 := proc(n)
        add((-1)^(n-j)*combinat[bell](2*j)*binomial(n,j),j=0..n) ;
    end proc:
    seq(A282010(n),n=0..20) ; # R. J. Mathar, Jun 27 2024
  • Mathematica
    a[n_]:=BellB[2n];Table[Sum[((-1)^(n-j))*a[j]*Binomial[n,j],{j,0,n}],{n,0,17}] (* Indranil Ghosh, Feb 25 2017 *)
  • PARI
    bell(n) = polcoeff( sum( k=0, n, prod(i=1, k, x/(1 - i*x)), x^n * O(x)), n)
    a(n) = sum(j=0, n, ((-1)^(n-j))*bell(2*j)*binomial(n,j)); \\ Michel Marcus, Feb 05 2017

Formula

a(n) = Sum_{j=0..n} ((-1)^(n-j))*A020557(j)*binomial(n,j).
a(n) = Sum_{j=0..n} ((-1)^(n-j))*A000110(2*j)*binomial(n,j).

Extensions

More terms from Michel Marcus, Feb 05 2017

A326434 E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.

Original entry on oeis.org

1, 4, 47, 895, 24450, 887803, 40818505, 2297393888, 154381810471, 12149510583583, 1102672816721422, 113974516318639363, 13277046519634998953, 1727765194711759098324, 249264545884060054668295, 39606622952407779396832791, 6891271396238954765341535650, 1306288225868329080524305347859, 268542657134280438710389415260401, 59628381166607045580114829853101712
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 2, r = 1.

Examples

			E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 895*x^3/3! + 24450*x^4/4! + 887803*x^5/5! + 40818505*x^6/6! + 2297393888*x^7/7! + 154381810471*x^8/8! + 12149510583583*x^9/9! + 1102672816721422*x^10/10! + ...
such that
A(x) = exp(-3) * (1 + (exp(x) + 2) + (exp(2*x) + 2)^2/2! + (exp(3*x) + 2)^3/3! + (exp(4*x) + 2)^4/4! + (exp(5*x) + 2)^5/5! + (exp(6*x) + 2)^6/6! + ...)
also
A(x) = exp(-3) * (exp(2) + exp(x)*exp(2*exp(x)) + exp(4*x)*exp(2*exp(2*x))/2! + exp(9*x)*exp(2*exp(3*x))/3! + exp(16*x)*exp(2*exp(4*x))/4! + exp(25*x)*exp(2*exp(5*x))/5! + exp(36*x)*exp(2*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-3) * sum(n=0, 500, (exp(n*x +O(x^31)) + 2)^n/n! ) )))

Formula

E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.
E.g.f.: exp(-3) * Sum_{n>=0} exp(n^2*x) * exp( 2*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n+1) = 0 (mod 2), a(3*n) = 1 (mod 2), and a(3*n+2) = 1 (mod 2) for n >= 0.

A326435 E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.

Original entry on oeis.org

1, 5, 69, 1496, 45771, 1840537, 92925982, 5705543791, 416015394341, 35365673566750, 3454046493504337, 382930667897753421, 47708365129614794580, 6622948820406278058625, 1016977626656613380728781, 171637260767262574245781800, 31661205827344145981298200207, 6352045190999137085697971335893
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 3, r = 1.

Examples

			E.g.f.: A(x) = 1 + 5*x + 69*x^2/2! + 1496*x^3/3! + 45771*x^4/4! + 1840537*x^5/5! + 92925982*x^6/6! + 5705543791*x^7/7! + 416015394341*x^8/8! + 35365673566750*x^9/9! + 3454046493504337*x^10/10! + ...
such that
A(x) = exp(-4) * (1 + (exp(x) + 3) + (exp(2*x) + 3)^2/2! + (exp(3*x) + 3)^3/3! + (exp(4*x) + 3)^4/4! + (exp(5*x) + 3)^5/5! + (exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-4) * (exp(3) + exp(x)*exp(3*exp(x)) + exp(4*x)*exp(3*exp(2*x))/2! + exp(9*x)*exp(3*exp(3*x))/3! + exp(16*x)*exp(3*exp(4*x))/4! + exp(25*x)*exp(3*exp(5*x))/5! + exp(36*x)*exp(3*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-4) * sum(n=0, 500, (exp(n*x +O(x^31)) + 3)^n/n! ) )))

Formula

E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.
E.g.f.: exp(-4) * Sum_{n>=0} exp(n^2*x) * exp( 3*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n) = 0 (mod 2), a(3*n-1) = 1 (mod 2), and a(3*n-2) = 1 (mod 2) for n > 0.

A326436 E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.

Original entry on oeis.org

1, 6, 95, 2307, 78000, 3433831, 188460821, 12508220886, 981371259995, 89426179550623, 9331384489007032, 1102143627943740931, 145924317814992561097, 21480095845779426077750, 3490477008130417972086807, 622292123277813938275834747, 121062971468108753273621477712, 25577093024015935514169919403295
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 4, r = 1.

Examples

			E.g.f.: A(x) = 1 + 6*x + 95*x^2/2! + 2307*x^3/3! + 78000*x^4/4! + 3433831*x^5/5! + 188460821*x^6/6! + 12508220886*x^7/7! + 981371259995*x^8/8! + 89426179550623*x^9/9! + 9331384489007032*x^10/10! + ...
such that
A(x) = exp(-5) * (1 + (exp(x) + 4) + (exp(2*x) + 4)^2/2! + (exp(3*x) + 4)^3/3! + (exp(4*x) + 4)^4/4! + (exp(5*x) + 4)^5/5! + (exp(6*x) + 4)^6/6! + ...)
also
A(x) = exp(-5) * (exp(4) + exp(x)*exp(4*exp(x)) + exp(4*x)*exp(4*exp(2*x))/2! + exp(9*x)*exp(4*exp(3*x))/3! + exp(16*x)*exp(4*exp(4*x))/4! + exp(25*x)*exp(4*exp(5*x))/5! + exp(36*x)*exp(4*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-5) * sum(n=0, 500, (exp(n*x +O(x^31)) + 4)^n/n! ) )))

Formula

E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.
E.g.f.: exp(-5) * Sum_{n>=0} exp(n^2*x) * exp( 4*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n+1) = 0 (mod 2), a(3*n) = 1 (mod 2), and a(3*n+2) = 1 (mod 2) for n >= 0.
Showing 1-10 of 17 results. Next