A208466
T(n,k) is the number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.
Original entry on oeis.org
1, 2, 2, 5, 15, 5, 15, 198, 203, 15, 52, 4041, 20746, 4140, 52, 203, 113458, 4132120, 4150760, 115975, 203, 877, 4132120, 1358524513, 10318694804, 1366230232, 4213597, 877, 4140, 187612143, 671329819215, 50996571454200, 51074630353994
Offset: 1
Table starts:
....1...........2..................5.....................15
....2..........15................198...................4041
....5.........203..............20746................4132120
...15........4140............4150760............10318694804
...52......115975.........1366230232.........51074630353994
..203.....4213597.......675203938944.....441285917587055633
..877...190899322....470798015742024.6105599904286957450405
.4140.10480142147.442649055938121520
Some solutions for n=4 and k=3:
..0..1..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..0..0..0....0..0..2....2..0..0....2..0..1....1..1..0....0..2..0....0..0..0
..0..1..0....0..0..0....0..2..0....0..0..0....0..0..0....0..0..0....0..2..1
A216460
T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the even squares of an nXk array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 7, 5, 5, 2, 5, 15, 20, 15, 5, 5, 15, 203, 203, 322, 52, 15, 5, 52, 716, 3429, 4140, 1335, 203, 15, 15, 203, 17733, 83440, 580479, 115975, 36401, 877, 52, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 52
Offset: 1
Some solutions for n=4 k=4
..0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x
..x..2..x..3....x..2..x..3....x..2..x..3....x..2..x..3....x..2..x..3
..4..x..5..x....0..x..4..x....4..x..5..x....3..x..0..x....0..x..1..x
..x..1..x..0....x..1..x..2....x..1..x..2....x..2..x..3....x..4..x..2
A216612
T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the odd squares of an nXk array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 5, 2, 2, 5, 15, 20, 15, 5, 2, 15, 41, 203, 67, 52, 5, 5, 52, 716, 3429, 4140, 1335, 203, 15, 5, 203, 2847, 83440, 83437, 115975, 6097, 877, 15, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 15, 4140
Offset: 1
Some solutions for n=4 k=4
..x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1
..2..x..3..x....2..x..3..x....1..x..2..x....2..x..3..x....1..x..2..x
..x..4..x..2....x..1..x..2....x..0..x..3....x..4..x..0....x..3..x..4
..5..x..6..x....4..x..3..x....2..x..1..x....2..x..5..x....0..x..2..x
A326600
E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
Offset: 0
E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
A208054
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1
Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
A326433
E.g.f.: exp(-2) * Sum_{n>=0} (exp(n*x) + 1)^n / n!.
Original entry on oeis.org
1, 3, 29, 474, 11349, 366289, 15125300, 770762673, 47199596441, 3403242019876, 284281430425747, 27150503912943937, 2932403885598294838, 354869660881411722107, 47739034071736749352125, 7090201955561116768761250, 1155624866838027573814278801, 205611555585528308269669174557, 39746979329229607204823274477284
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 29*x^2/2! + 474*x^3/3! + 11349*x^4/4! + 366289*x^5/5! + 15125300*x^6/6! + 770762673*x^7/7! + 47199596441*x^8/8! + 3403242019876*x^9/9! + 284281430425747*x^10/10! + 27150503912943937*x^11/11! + 2932403885598294838*x^12/12! + ...
such that
A(x) = exp(-2) * (1 + (exp(x) + 1) + (exp(2*x) + 1)^2/2! + (exp(3*x) + 1)^3/3! + (exp(4*x) + 1)^4/4! + (exp(5*x) + 1)^5/5! + (exp(6*x) + 1)^6/6! + ...)
also
A(x) = exp(-2) * (exp(1) + exp(x)*exp(exp(x)) + exp(4*x)*exp(exp(2*x))/2! + exp(9*x)*exp(exp(3*x))/3! + exp(16*x)*exp(exp(4*x))/4! + exp(25*x)*exp(exp(5*x))/5! + exp(36*x)*exp(exp(6*x))/6! + ...).
A282010
Number of ways to partition Turan graph T(2n,n) into connected components.
Original entry on oeis.org
1, 1, 12, 163, 3411, 97164, 3576001, 163701521, 9064712524, 594288068019, 45352945127123, 3973596101084108, 395147058261233761, 44170986458602383553, 5504694207040057913164, 759355292729159336345955, 115228949414563130433140659, 19129024114529146183236435660
Offset: 0
For n=1, Turan graph T(2,1) (2-empty graph) shall be partitioned into two singleton subgraphs (1 way), a(1)=1.
For n=2, Turan graph T(4,2) (square graph) shall be partitioned into: the same square graph (1 way) or one singleton + one 3-path subgraphs (4 ways) or two singleton + one 2-path subgraphs (4 ways) or two 2-path subgraphs (2 ways) or four singleton subgraphs (1 way), a(2)=12.
-
A282010 := proc(n)
add((-1)^(n-j)*combinat[bell](2*j)*binomial(n,j),j=0..n) ;
end proc:
seq(A282010(n),n=0..20) ; # R. J. Mathar, Jun 27 2024
-
a[n_]:=BellB[2n];Table[Sum[((-1)^(n-j))*a[j]*Binomial[n,j],{j,0,n}],{n,0,17}] (* Indranil Ghosh, Feb 25 2017 *)
-
bell(n) = polcoeff( sum( k=0, n, prod(i=1, k, x/(1 - i*x)), x^n * O(x)), n)
a(n) = sum(j=0, n, ((-1)^(n-j))*bell(2*j)*binomial(n,j)); \\ Michel Marcus, Feb 05 2017
A326434
E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.
Original entry on oeis.org
1, 4, 47, 895, 24450, 887803, 40818505, 2297393888, 154381810471, 12149510583583, 1102672816721422, 113974516318639363, 13277046519634998953, 1727765194711759098324, 249264545884060054668295, 39606622952407779396832791, 6891271396238954765341535650, 1306288225868329080524305347859, 268542657134280438710389415260401, 59628381166607045580114829853101712
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 895*x^3/3! + 24450*x^4/4! + 887803*x^5/5! + 40818505*x^6/6! + 2297393888*x^7/7! + 154381810471*x^8/8! + 12149510583583*x^9/9! + 1102672816721422*x^10/10! + ...
such that
A(x) = exp(-3) * (1 + (exp(x) + 2) + (exp(2*x) + 2)^2/2! + (exp(3*x) + 2)^3/3! + (exp(4*x) + 2)^4/4! + (exp(5*x) + 2)^5/5! + (exp(6*x) + 2)^6/6! + ...)
also
A(x) = exp(-3) * (exp(2) + exp(x)*exp(2*exp(x)) + exp(4*x)*exp(2*exp(2*x))/2! + exp(9*x)*exp(2*exp(3*x))/3! + exp(16*x)*exp(2*exp(4*x))/4! + exp(25*x)*exp(2*exp(5*x))/5! + exp(36*x)*exp(2*exp(6*x))/6! + ...).
A326435
E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.
Original entry on oeis.org
1, 5, 69, 1496, 45771, 1840537, 92925982, 5705543791, 416015394341, 35365673566750, 3454046493504337, 382930667897753421, 47708365129614794580, 6622948820406278058625, 1016977626656613380728781, 171637260767262574245781800, 31661205827344145981298200207, 6352045190999137085697971335893
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 69*x^2/2! + 1496*x^3/3! + 45771*x^4/4! + 1840537*x^5/5! + 92925982*x^6/6! + 5705543791*x^7/7! + 416015394341*x^8/8! + 35365673566750*x^9/9! + 3454046493504337*x^10/10! + ...
such that
A(x) = exp(-4) * (1 + (exp(x) + 3) + (exp(2*x) + 3)^2/2! + (exp(3*x) + 3)^3/3! + (exp(4*x) + 3)^4/4! + (exp(5*x) + 3)^5/5! + (exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-4) * (exp(3) + exp(x)*exp(3*exp(x)) + exp(4*x)*exp(3*exp(2*x))/2! + exp(9*x)*exp(3*exp(3*x))/3! + exp(16*x)*exp(3*exp(4*x))/4! + exp(25*x)*exp(3*exp(5*x))/5! + exp(36*x)*exp(3*exp(6*x))/6! + ...).
A326436
E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.
Original entry on oeis.org
1, 6, 95, 2307, 78000, 3433831, 188460821, 12508220886, 981371259995, 89426179550623, 9331384489007032, 1102143627943740931, 145924317814992561097, 21480095845779426077750, 3490477008130417972086807, 622292123277813938275834747, 121062971468108753273621477712, 25577093024015935514169919403295
Offset: 0
E.g.f.: A(x) = 1 + 6*x + 95*x^2/2! + 2307*x^3/3! + 78000*x^4/4! + 3433831*x^5/5! + 188460821*x^6/6! + 12508220886*x^7/7! + 981371259995*x^8/8! + 89426179550623*x^9/9! + 9331384489007032*x^10/10! + ...
such that
A(x) = exp(-5) * (1 + (exp(x) + 4) + (exp(2*x) + 4)^2/2! + (exp(3*x) + 4)^3/3! + (exp(4*x) + 4)^4/4! + (exp(5*x) + 4)^5/5! + (exp(6*x) + 4)^6/6! + ...)
also
A(x) = exp(-5) * (exp(4) + exp(x)*exp(4*exp(x)) + exp(4*x)*exp(4*exp(2*x))/2! + exp(9*x)*exp(4*exp(3*x))/3! + exp(16*x)*exp(4*exp(4*x))/4! + exp(25*x)*exp(4*exp(5*x))/5! + exp(36*x)*exp(4*exp(6*x))/6! + ...).
Showing 1-10 of 17 results.
Comments