A071101 Expansion of (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.
5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405, 1798250918672, 5197041610021
Offset: 0
Examples
G.f. = 5 + 16*x + 45*x^2 + 130*x^3 + 377*x^4 + 1088*x^5 + 3145*x^6 + 9090*x^7 + ...
References
- J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..2169
- J. Propp, Updated article
- J. Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
Programs
-
GAP
a:=[5,16,45,130];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] +2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019 -
Maple
seq(coeff(series((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
-
Mathematica
Table[Abs[Fibonacci[n+3, 1+I]]^2, {n,0,30}] (* Vladimir Reshetnikov, Oct 05 2016 *) CoefficientList[Series[(5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *) LinearRecurrence[{2,2,2,-1},{5,16,45,130},30] (* Harvey P. Dale, Oct 03 2024 *)
-
PARI
{a(n) = my(m = abs(n+3)); polcoeff( (x - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)}; /* Michael Somos, Dec 15 2011 */
-
PARI
x='x+O('x^33); Vec((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
-
Python
from math import log a0,a1,a2,a3,n = 130,45,16,5,3 print(0,a3) print(1,a2) print(2,a1) print(3,a0) while log(a0)/log(10) < 1000: a0,a1,a2,a3,n = 2*(a0+a1+a2)-a3,a0,a1,a2,n+1 print(n,a0) # A.H.M. Smeets, Sep 12 2018
-
Sage
((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019
Formula
G.f.: (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
a(-n) = a(-6 + n). a(-1) = 2, a(-2) = 1, a(-3) = 0. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011
A112835(2*n + 3) = a(n).
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018
Comments