cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071101 Expansion of (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) in powers of x.

Original entry on oeis.org

5, 16, 45, 130, 377, 1088, 3145, 9090, 26269, 75920, 219413, 634114, 1832625, 5296384, 15306833, 44237570, 127848949, 369490320, 1067846845, 3086134658, 8919094697, 25776662080, 74495936025, 215297250946, 622220603405, 1798250918672, 5197041610021
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2002

Keywords

Comments

Number of tilings of the 2-mod-4 pillow of order n is a perfect square times a(n). [Propp, 1999, p. 272]

Examples

			G.f. = 5 + 16*x + 45*x^2 + 130*x^3 + 377*x^4 + 1088*x^5 + 3145*x^6 + 9090*x^7 + ...
		

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see Problem 12).

Crossrefs

Programs

  • GAP
    a:=[5,16,45,130];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] +2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4) )); // G. C. Greubel, Jul 29 2019
    
  • Maple
    seq(coeff(series((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    Table[Abs[Fibonacci[n+3, 1+I]]^2, {n,0,30}] (* Vladimir Reshetnikov, Oct 05 2016 *)
    CoefficientList[Series[(5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *)
    LinearRecurrence[{2,2,2,-1},{5,16,45,130},30] (* Harvey P. Dale, Oct 03 2024 *)
  • PARI
    {a(n) = my(m = abs(n+3)); polcoeff( (x - x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + x * O(x^m), m)};  /* Michael Somos, Dec 15 2011 */
    
  • PARI
    x='x+O('x^33); Vec((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)) \\ Altug Alkan, Sep 12 2018
    
  • Python
    from math import log
    a0,a1,a2,a3,n = 130,45,16,5,3
    print(0,a3)
    print(1,a2)
    print(2,a1)
    print(3,a0)
    while log(a0)/log(10) < 1000:
        a0,a1,a2,a3,n = 2*(a0+a1+a2)-a3,a0,a1,a2,n+1
        print(n,a0) # A.H.M. Smeets, Sep 12 2018
    
  • Sage
    ((5+6*x+3*x^2-2*x^3)/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 29 2019

Formula

G.f.: (5 + 6*x + 3*x^2 - 2*x^3) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4).
a(-n) = a(-6 + n). a(-1) = 2, a(-2) = 1, a(-3) = 0. a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4). - Michael Somos, Dec 15 2011
A112835(2*n + 3) = a(n).
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018