cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071232 a(n) = (n^6 + n^3)/2.

Original entry on oeis.org

0, 1, 36, 378, 2080, 7875, 23436, 58996, 131328, 266085, 500500, 886446, 1493856, 2414503, 3766140, 5697000, 8390656, 12071241, 17009028, 23526370, 32004000, 42887691, 56695276, 74024028, 95558400, 122078125, 154466676, 193720086, 240956128, 297423855, 364513500
Offset: 0

Views

Author

N. J. A. Sloane, Jun 11 2002

Keywords

Comments

Number of unoriented rows of length 6 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=36, there are 2^6=64 oriented arrangements of two colors. Of these, 2^3=8 are achiral. That leaves (64-8)/2=28 chiral pairs. Adding achiral and chiral, we get 36. - Robert A. Russell, Nov 14 2018
For n > 0, a(2n+1) is the number of non-isomorphic 8C_m-snakes, where m = 2n+1 or m = 2n (for n>=2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 16 2019

References

  • C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.
  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Row 6 of A277504.
Cf. A001014 (oriented), A085744 (chiral), A000578 (achiral).

Programs

  • GAP
    List([0..50], n -> (n^6 + n^3)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [(n^6 + n^3)/2: n in [0..50]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    Table[(n^6+n^3)/2,{n,0,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,36,378,2080,7875,23436},40] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    vector(50, n, n--; (n^6 + n^3)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [(n^6 + n^3)/2 for n in range(50)] # G. C. Greubel, Nov 15 2018
    

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=0, a(1)=1, a(2)=36, a(3)=378, a(4)=2080, a(5)=7875, a(6)=23436. - Harvey P. Dale, Nov 06 2011
G.f.: x*(28*x^4 + 155*x^3 + 147*x^2 + 29*x + 1)/(1-x)^7. - Colin Barker, Oct 12 2012
From Robert A. Russell, Nov 14 2018: (Start)
a(n) = (A001014(n) + A000578(n)) / 2 = (n^6 + n^3) / 2.
a(n) = A001014(n) - A085744(n) = A085744(n) + A000578(n).
G.f.: (Sum_{j=1..6} S2(6,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..3} S2(3,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..5} A145882(6,k) * x^k / (1-x)^7.
E.g.f.: (Sum_{k=1..6} S2(6,k)*x^k + Sum_{k=1..3} S2(3,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>6, a(n) = Sum_{j=1..7} -binomial(j-8,j) * a(n-j). (End)
E.g.f.: x*(2 +34*x +91*x^2 +65*x^3 +15*x^4 +x^5)*exp(x)/2. - G. C. Greubel, Nov 15 2018
a(n) = A000217(n^3), sum of the integers up to the n'th cube. - R. J. Mathar, Mar 11 2025