cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071238 a(n) = n*(n+1)*(2*n^2+1)/6.

Original entry on oeis.org

0, 1, 9, 38, 110, 255, 511, 924, 1548, 2445, 3685, 5346, 7514, 10283, 13755, 18040, 23256, 29529, 36993, 45790, 56070, 67991, 81719, 97428, 115300, 135525, 158301, 183834, 212338, 244035, 279155, 317936, 360624, 407473, 458745, 514710, 575646, 641839
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

Binomial transform of [1, 8, 21, 22, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
For n > 0, a(n) is the n-th antidiagonal sum of the convolution arrays A213752 and A213836). - Clark Kimberling, Jun 20 2012
The first differences are given in A277229, as a convolution of the odd-indexed triangular numbers A000217(2*n+1) and the squares A000290(n), n >= 0. - J. M. Bergot, Sep 14 2016

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A000292, A002417, A071270, A277229 (first differences).

Programs

  • Magma
    [n*(n+1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Maple
    A071238:=n->n*(n+1)*(2*n^2+1)/6: seq(A071238(n), n=0..60); # Wesley Ivan Hurt, Sep 24 2016
  • Mathematica
    Table[n (n + 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)
    CoefficientList[Series[x (1 + x) (1 + 3 x)/(1 - x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,9,38,110},40] (* Harvey P. Dale, Oct 02 2021 *)
  • PARI
    a(n)=n*(n+1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013

Formula

G.f.: x*(1+x)*(1+3*x)/(1-x)^5. - Colin Barker, Mar 22 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4, a(0)=0, a(1)=1, a(2)=9, a(3)=38, a(4)=110. - Yosu Yurramendi, Sep 03 2013
E.g.f.: (1/6)*x*(6 + 21*x + 14*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Sep 17 2016
a(n) = n*A000292(n) + (n-1)*A000292(n-1). - Bruno Berselli, Sep 22 2016
a(n) = A002417(n-1) + A002417(n). - Yasser Arath Chavez Reyes, Feb 15 2024