cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071270 a(n) = n^2*(2*n^2 + 1)/3.

Original entry on oeis.org

0, 1, 12, 57, 176, 425, 876, 1617, 2752, 4401, 6700, 9801, 13872, 19097, 25676, 33825, 43776, 55777, 70092, 87001, 106800, 129801, 156332, 186737, 221376, 260625, 304876, 354537, 410032, 471801, 540300, 616001, 699392, 790977, 891276, 1000825, 1120176
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Programs

  • Magma
    [n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Maple
    A071270:=n->(n^2)*(2*n^2+1)/3; seq(A071270(n), n=0..100); # Wesley Ivan Hurt, Nov 14 2013
  • Mathematica
    Table[(n^2)(2n^2+1)/3, {n,0,100}] (* Wesley Ivan Hurt, Nov 14 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,12,57,176},50] (* Harvey P. Dale, Jan 09 2016 *)
  • R
    a <- c(0, 1, 12, 57, 176)
    for(n in (length(a)+1):30)
         a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5]
    a # Yosu Yurramendi, Sep 03 2013
    
  • SageMath
    def A071270(n): return binomial(2*n^2 + 1,2)/3
    [A071270(n) for n in range(41)] # G. C. Greubel, Sep 13 2024

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. - Yosu Yurramendi, Sep 03 2013
a(n) = A000217(A001105(n))/ 3. - Michel Marcus, Mar 02 2018
From G. C. Greubel, Sep 13 2024: (Start)
G.f.: x*(1 + 7*x + 7*x^2 + x^3)/(1-x)^5.
E.g.f.: (1/3)*x*(3 + 15*x + 12*x^2 + 2*x^3)*exp(x). (End)