A071270 a(n) = n^2*(2*n^2 + 1)/3.
0, 1, 12, 57, 176, 425, 876, 1617, 2752, 4401, 6700, 9801, 13872, 19097, 25676, 33825, 43776, 55777, 70092, 87001, 106800, 129801, 156332, 186737, 221376, 260625, 304876, 354537, 410032, 471801, 540300, 616001, 699392, 790977, 891276, 1000825, 1120176
Offset: 0
References
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2*(2*n^2+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
-
Maple
A071270:=n->(n^2)*(2*n^2+1)/3; seq(A071270(n), n=0..100); # Wesley Ivan Hurt, Nov 14 2013
-
Mathematica
Table[(n^2)(2n^2+1)/3, {n,0,100}] (* Wesley Ivan Hurt, Nov 14 2013 *) LinearRecurrence[{5,-10,10,-5,1},{0,1,12,57,176},50] (* Harvey P. Dale, Jan 09 2016 *)
-
R
a <- c(0, 1, 12, 57, 176) for(n in (length(a)+1):30) a[n] <- 5*a[n-1]-10*a[n-2]+10*a[n-3]-5*a[n-4]+a[n-5] a # Yosu Yurramendi, Sep 03 2013
-
SageMath
def A071270(n): return binomial(2*n^2 + 1,2)/3 [A071270(n) for n in range(41)] # G. C. Greubel, Sep 13 2024
Formula
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with n>4, a(0)=0, a(1)=1, a(2)=12, a(3)=57, a(4)=176. - Yosu Yurramendi, Sep 03 2013
From G. C. Greubel, Sep 13 2024: (Start)
G.f.: x*(1 + 7*x + 7*x^2 + x^3)/(1-x)^5.
E.g.f.: (1/3)*x*(3 + 15*x + 12*x^2 + 2*x^3)*exp(x). (End)