cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071327 Sum of the squared primes dividing n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 0, 0, 4, 0, 9, 0, 4, 0, 0, 0, 4, 25, 0, 9, 4, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 49, 25, 0, 4, 0, 9, 0, 4, 0, 0, 0, 4, 0, 0, 9, 4, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 25, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 0, 0, 4, 0, 9, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, # &, PrimeQ@ Sqrt@ # &] &, 91] (* Michael De Vlieger, Nov 18 2017 *)
  • PARI
    A071327(n) = { my(r); sumdiv(n,d,(issquare(d,&r)&&isprime(r)) * d); } \\ Antti Karttunen, Nov 19 2017

Formula

a(n) = Sum_{d|n} A010052(d)*A010051(A000196(d))*d. - Antti Karttunen, Nov 18 2017
G.f.: Sum_{k>=1} prime(k)^2 * x^(prime(k)^2) / (1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Apr 06 2020
a(n) = Sum_{p^2|n} p^2. - Wesley Ivan Hurt, Feb 21 2022
Additive with a(p^e) = p^2 if e >= 2, and 0 otherwise. - Amiram Eldar, May 15 2025