cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071408 a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)) with a(1)=0, a(2)=1, and where w is the imaginary cubic root of unity.

Original entry on oeis.org

0, 1, 4, 7, 10, 15, 20, 25, 32, 39, 46, 55, 64, 73, 84, 95, 106, 119, 132, 145, 160, 175, 190, 207, 224, 241, 260, 279, 298, 319, 340, 361, 384, 407, 430, 455, 480, 505, 532, 559, 586, 615, 644, 673, 704, 735, 766, 799, 832, 865, 900, 935, 970, 1007, 1044
Offset: 1

Views

Author

Robert G. Wilson v, Jun 24 2002

Keywords

Comments

w = exp(2*Pi*i/3)= (-1 - sqrt(-3))/2. Beginning with a(2) the first differences are 3,3,3,5,5,5,7,7,7,9,9,9,11, etc.

Crossrefs

Cf. A071618.

Programs

  • Mathematica
    a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := a[n] = Simplify[(2/3)(1 + w^n + w^(2n)) + 2a[n - 1] - a[n - 2]]; Table[ a[n], {n, 1, 60}]
    Table[If[n<3,n-1,Floor[((n+1)^2-4)/3]],{n,1,100}] (*  Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,4,7,10},60] (* Harvey P. Dale, Jun 10 2016 *)
  • PARI
    a(n)=n*(n+2)\3 - 1 \\ Charles R Greathouse IV, Mar 02 2017

Formula

a(n) = A032765(n)-1.
a(n) = floor((n-1)*(n+1)*(n+3)/(3*n+3)). - Gary Detlefs, Jul 13 2010
a(n) = (n-1)^2 - A030511(n-1). - Wesley Ivan Hurt, Jun 19 2013
G.f.: x^2*(1+x)*(x^2-x-1) / ( (1+x+x^2)*(x-1)^3 ). - R. J. Mathar, Jun 23 2013
a(n) = n + floor(n*(n-1)/3) - 1. - Bruno Berselli, Mar 02 2017