A071408 a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2*n+2)) with a(1)=0, a(2)=1, and where w is the imaginary cubic root of unity.
0, 1, 4, 7, 10, 15, 20, 25, 32, 39, 46, 55, 64, 73, 84, 95, 106, 119, 132, 145, 160, 175, 190, 207, 224, 241, 260, 279, 298, 319, 340, 361, 384, 407, 430, 455, 480, 505, 532, 559, 586, 615, 644, 673, 704, 735, 766, 799, 832, 865, 900, 935, 970, 1007, 1044
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Cf. A071618.
Programs
-
Mathematica
a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := a[n] = Simplify[(2/3)(1 + w^n + w^(2n)) + 2a[n - 1] - a[n - 2]]; Table[ a[n], {n, 1, 60}] Table[If[n<3,n-1,Floor[((n+1)^2-4)/3]],{n,1,100}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *) LinearRecurrence[{2,-1,1,-2,1},{0,1,4,7,10},60] (* Harvey P. Dale, Jun 10 2016 *)
-
PARI
a(n)=n*(n+2)\3 - 1 \\ Charles R Greathouse IV, Mar 02 2017
Formula
a(n) = A032765(n)-1.
a(n) = floor((n-1)*(n+1)*(n+3)/(3*n+3)). - Gary Detlefs, Jul 13 2010
a(n) = (n-1)^2 - A030511(n-1). - Wesley Ivan Hurt, Jun 19 2013
G.f.: x^2*(1+x)*(x^2-x-1) / ( (1+x+x^2)*(x-1)^3 ). - R. J. Mathar, Jun 23 2013
a(n) = n + floor(n*(n-1)/3) - 1. - Bruno Berselli, Mar 02 2017
Comments