A071521 Number of 3-smooth numbers <= n.
1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1
References
- Bruce C. Berndt and Robert A. Rankin, "Ramanujan : letters and commentary", History of Mathematics Volume 9, AMS-LMS, p. 23, p. 35.
- G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, AMS Chelsea Pub., 1999, pages 67-82.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Thierry Bousch, La Tour de Stockmeyer, Séminaire Lotharingien de Combinatoire 77 (2017), Article B77d.
- M. Haussman and H. N. Shapiro, On Ramanujan right triangle conjecture, Comm. Pure Appl. Math. 42 (1989), 885-889.
- A. M. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 77-98; 250-251.
- Raphael Schumacher, The Formulas for the Distribution of the 3-Smooth, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv preprint arXiv:1608.06928 [math.NT], 2016.
Programs
-
Haskell
a071521 n = length $ takeWhile (<= n) a003586_list -- Reinhard Zumkeller, Aug 14 2011
-
Maple
N:= 10000: # to get a(1) to a(N) V:= Vector(N): for y from 0 to floor(log[3](N)) do for x from 0 to ilog2(N/3^y) do V[2^x*3^y]:= 1 od od: convert(map(round,Statistics:-CumulativeSum(V)),list); # Robert Israel, Dec 16 2014
-
Mathematica
a[n_] := Sum[ MoebiusMu[6k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Oct 11 2011, after Benoit Cloitre *) f[n_] := Sum[Floor@Log[3, n/2^i] + 1, {i, 0, Log[2, n]}]; Array[f, 75] (* faster, or *) f[n_] := Sum[Floor@Log[2, n/3^i] + 1, {i, 0, Log[3, n]}]; Array[f, 75] (* Robert G. Wilson v, Aug 18 2012 *) Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<4,1,0],{n,80}]] (* Harvey P. Dale, Jan 11 2017 *)
-
PARI
for(n=1,100,print1(sum(k=1,n,if(sum(i=3,n,if(k%prime(i),0,1)),0,1)),","))
-
PARI
a(n)=sum(k=1,n,moebius(2*3*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
-
PARI
a(n)=my(t=1/3); sum(k=0,logint(n,3), t*=3; logint(n\t,2)+1) \\ Charles R Greathouse IV, Jan 08 2018
-
Python
from sympy import integer_log def A071521(n): return sum((n//3**i).bit_length() for i in range(integer_log(n,3)[0]+1)) # Chai Wah Wu, Sep 15 2024
Formula
a(n) = Card{ k | A003586(k) <= n }. Asymptotically: let a=1/(2*log(2)*log(3)), b=sqrt(6), then from Ramanujan a(n) ~ a*log(2*n)*log(3*n) or equivalently a(n) ~ a*log(b*n)^2.
a(n) = Sum_{k=1..n} mu(6k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{k=1..n} (floor(6^k/k)-floor((6^k-1)/k)). - Anthony Browne, May 19 2016
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_2(n))} (floor(log_3(n/2^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_2(n/3^i)) + 1). (End)
Comments