cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A072005 Smallest solution to gcd(k, reverse(k)) = 3^n.

Original entry on oeis.org

1, 3, 9, 2889, 2899999989, 4899999987, 19899999972, 29898999693, 49989958299, 49999917897, 99884394999, 372797889885, 1989767716659, 2678052898989, 17902896898419, 137530987695297, 189281899170567, 368055404997498, 14048104419899757, 437893473401621955, 218264275944702783
Offset: 0

Views

Author

Labos Elemer, Jun 04 2002

Keywords

Examples

			n=4: 3^4 = 81, a(4) = 2899999989 = 3*3*3*3*35802469, reverse(a(4)) = 2*3*3*3*3*61111111; gcd = 81 = 3^n.
		

Crossrefs

Formula

a(n) = A069554(3^n).

Extensions

a(15)-a(20) from Giovanni Resta, Oct 30 2019

A072021 Smallest solution to gcd(x, reverse(x)) = 5^n.

Original entry on oeis.org

5, 5200, 521000, 5213750, 521875, 5218750, 52130234375, 5734841796875, 57869714843750, 526046650390625, 5265674365234375, 52187008544921875, 526515306396484375, 5213023309008789062500, 5213596736358642578125, 5260466086273193359375, 526041911745452880859375
Offset: 1

Views

Author

Labos Elemer, Jun 06 2002

Keywords

Examples

			For n = 4, gcd(521875, 578125) = 3125 = 5^4.
For n = 8, a(8) = 5734841796875 = 5^9*2936239, reverse(a(8)) = 5786971484375 = 5^8*71*208657.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 1); while (gcd(k, fromdigits(Vecrev(digits(k)))) != 5^n, k++); k;} \\ Michel Marcus, Jul 13 2018

Formula

a(n) = A069554(5^n).

Extensions

a(9)-a(18) from Hiroaki Yamanouchi, Sep 10 2014

A072016 Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).

Original entry on oeis.org

2889, 3699, 3888, 3969, 4779, 4887, 5589, 5697, 5778, 5859, 5886, 5967, 6399, 6669, 6777, 6885, 6939, 7398, 7479, 7587, 7668, 7695, 7749, 7776, 7857, 7884, 7938, 7965, 8289, 8397, 8559, 8667, 8775, 8829, 8883, 8937, 9099, 9288, 9369, 9396, 9477, 9558, 9585
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Comments

Solutions to gcd(k, reverse(k)) = 1,3,9 (lower powers of 3) are trivial (see A072005).

Examples

			2889 = 107*3*3*3, 9889 = 3*3*3*3*2*61.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^4] | Gcd(n,Seqint(Reverse(Intseq(n)))) eq 27]; // Vincenzo Librandi, Jul 11 2018
  • Mathematica
    Select[Range[10^4], GCD[#, FromDigits[Reverse[IntegerDigits[#]]]] == 27 &] (* Vincenzo Librandi, Jul 11 2018 *)
  • PARI
    isok(n) = gcd(n, fromdigits(Vecrev(digits(n)))) == 27; \\ Michel Marcus, Jul 11 2018
    

A072050 Smallest solution to GCD(x,A004086(x))=7^n.

Original entry on oeis.org

7, 18718, 343, 125204947, 231012215, 11298657013, 211066659013, 117088913464607, 2846847905744815, 108244538579770418, 2080795357577501075, 18312871825384462928, 26268977180287044053417, 1734582041294009627423816
Offset: 1

Views

Author

Labos Elemer, Jun 10 2002

Keywords

Crossrefs

Programs

Formula

a(n) = A069554(7^n).

Extensions

a(8)-a(9) from Max Alekseyev, Jun 17 2011
a(10)-a(14) from Giovanni Resta, Oct 30 2019

A072018 Numbers k for which gcd(k, reverse(k)) = 243 = 3^5.

Original entry on oeis.org

4899999987, 4989999897, 4999889997, 4999997889, 5889998997, 5889999969, 5898989997, 5898998988, 5899899789, 5899979979, 5899987998, 5899989699, 5899996989, 5979999879, 5988899997, 5988998898, 5989889979, 5989897998
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Examples

			k = 4899999987 = 3*3*3*3*3*157*128437 and reverse(k) = 78999999984 = 2*2*2*2*3*3*3*3*3*3*2031893, gcd = 243. Numerous but not all solutions are obtained by inserting strings of 9's between digits of A071016. Further such regular transformations exist.
		

Crossrefs

A072032 a(n) = gcd(2^n, reverse(2^n)) = gcd(2^n, A004086(2^n)) = A055483(2^n).

Original entry on oeis.org

2, 4, 8, 1, 1, 2, 1, 4, 1, 1, 2, 8, 2, 1, 1, 4, 1, 2, 1, 1, 2, 2, 2, 1, 1, 16, 1, 2, 1, 1, 4, 4, 2, 1, 1, 2, 1, 8, 1, 1, 8, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 8, 4, 1, 1, 1, 1, 1, 8, 1, 1, 16, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 8, 1, 1, 1, 1, 1, 1, 8, 1, 2, 2, 1, 1, 1, 1, 1, 1, 16, 1, 8, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jun 07 2002

Keywords

Examples

			n=12: a(12) = gcd(4096,6904) = 8.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] red[x_] := Reverse[IntegerDigits[x]] Table[GCD[2^w, tn[red[2^w]]], {w, 1, 128}]

A072017 Numbers k such that gcd(k, reverse(k)) = 81 = 3^4, where reverse(x) = A004086(x).

Original entry on oeis.org

2899999989, 2989999899, 2999889999, 3799999899, 3898989999, 3899799999, 3899999988, 3979989999, 3988899999, 3989999898, 3989999979, 3998999889, 3999889998, 3999898989, 3999899799, 3999979989, 3999988899, 4699998999
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Comments

Numerous solutions can be constructed by inserting strings of suitable digits between digits of terms in A071016.

Examples

			k = 3*3*3*3*3*449*64157 and reverse(k) = 2*2*3*3*3*3*31*67*14827, GCD = 81.
		

Crossrefs

A071788 Integer quotients arising in A071687.

Original entry on oeis.org

34, 12, 45, 9, 175, 4, 175, 208, 34, 76, 12, 175, 175, 4, 45, 9, 9, 4, 175, 375, 175, 34, 232, 64, 12, 34, 208, 12, 15, 175, 45, 4, 45, 9, 9, 175, 25, 4, 175, 175, 175, 175, 375, 175, 175, 175, 175, 175, 34, 172, 4168, 208, 12, 34, 1528, 232, 76, 208, 12, 38125
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Examples

			x=4200, Rev[x]=24, q=175.
		

Crossrefs

Formula

Quotients of q=Max[x/Rev[x], Rev[x], x], q>1 and Mod[q, 10]>0, I.e. integer quotient is neither 1, nor divisible by base=10. Rev[x]=A004086[x], digit reversal of x.

A072033 Smallest x > 0 such that gcd(2^x, A004086(2^x)) = 2^n.

Original entry on oeis.org

4, 1, 2, 3, 26, 131, 227, 301, 567, 879, 3240, 11051, 8048, 38911, 7321, 97309, 108190, 6294, 138124, 4675268, 2687104, 1336154, 5774420
Offset: 1

Views

Author

Labos Elemer, Jun 07 2002

Keywords

Comments

a(14)=7321, a(17)=6294.

Examples

			n=4: a(4)=26 because gcd(2^26, reverse(2^26)) = gcd(67108864, 46880176) = 16 = 2^n.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1}, While[ IntegerExponent[ GCD[2^k, FromDigits@ Reverse@ IntegerDigits[2^k]], 2] != n, k++]; k]; Array[a, 13, 0] (* Giovanni Resta, Oct 28 2019 *)

Formula

a(n) = min{x: gcd(2^x, reverse(2^x))=2^n} = min{x: A055483(x)=2^n}.
A072032(a(n)) = 2^n.

Extensions

Offset corrected, missing a(3) and a(13)-a(22) added by Giovanni Resta, Oct 28 2019

A072051 Smallest k such that gcd(k, reverse(k)) = 11^n.

Original entry on oeis.org

11, 121, 1331, 14641, 121110352, 1332213872, 105923336431682, 4676049710123077, 36606937477221265, 30983951005022964839, 1365869521861436622239
Offset: 1

Views

Author

Labos Elemer, Jun 10 2002

Keywords

Examples

			a(8) = 4676049710123077 = (11^8)*13*1678009, reverse(a(8)) = 7703210179406764 = (11^8)*2*2*157*57223.
		

Crossrefs

Cf. A004086, A055483, A069554, A071686 (=2^n), A072005 (=3^n), A072021 (=5^n), A072050 (=7^n).

Formula

a(n) = A069554(11^n).

Extensions

a(9)-a(11) from Sean A. Irvine, Sep 02 2024
Showing 1-10 of 10 results.