A071919 Number of monotone nondecreasing functions [n]->[m] for n >= 0, m >= 0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0
Offset: 0
Examples
1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 0, 1, 3, 6, 10, 15, 21, 28, 36, ... 0, 1, 4, 10, 20, 35, 56, 84, 120, ... 0, 1, 5, 15, 35, 70, 126, 210, 330, ... 0, 1, 6, 21, 56, 126, 252, 462, 792, ... 0, 1, 7, 28, 84, 210, 462, 924, 1716, ... 0, 1, 8, 36, 120, 330, 792, 1716, 3432, ... 0, 1, 9, 45, 165, 495, 1287, 3003, 6435, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 101 antidiagonals, flattened
- D. Merlini, F. Uncini and M. C. Verri, A unified approach to the study of general and palindromic compositions, Integers 4 (2004), A23, 26 pp.
- Wolfdieter Lang, Simple proofs of some facts related to the Bell sequence and triangles A007318 (Pascal) and A071919 (enlarged Pascal). [From _Wolfdieter Lang_, Jun 23 2010]
Crossrefs
Programs
-
Maple
A:= (n, m)-> binomial(n+m-1, n): seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Jan 13 2017
-
Mathematica
Table[Table[Binomial[m - 1 + n, n], {m, 0, 10}], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jun 03 2009 *) a[n_, m_] := Binomial[m - 1 + n, n]; Table[Table[a[n, m - n], {n, 0, m}], {m, 0, 10}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
PARI
{ n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+i; v[i][j+k]=v[i-1][j]+i+1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
-
PARI
{a(n) = my(m); if( n<1, n==0, m = (sqrtint(8*n+1) - 1)\2; binomial(m-1, n - m*(m+1)/2))}; /* Michael Somos, Aug 20 2006 */
Formula
Limit_{k->infinity} A071919^k = (A000110,0,0,0,0,...) with the Bell numbers in the first column. For a proof see, e.g., the W. Lang link, proposition 12.
A(n,k) = binomial(n+k-1,n). - Reinhard Zumkeller, Jul 27 2005
G.f.: 1 + x + x^3(1+x) + x^6(1+x)^2 + x^10(1+x)^3 + ... . - Michael Somos, Aug 20 2006
G.f. of the triangular interpretation: (-1+x*y)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015
Comments