cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071919 Number of monotone nondecreasing functions [n]->[m] for n >= 0, m >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

Keywords

Comments

Sometimes called a Riordan array.
Number of different partial sums of 1 + [2,3] + [3,4] + [4,5] + ... - Jon Perry, Jan 01 2004
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 05 2005
T(n,k)=abs(A110555(n,k)), A110555(n,k)=T(n,k)*(-1)^k. - Reinhard Zumkeller, Jul 27 2005
(1,0)-Pascal triangle. - Philippe Deléham, Nov 21 2006
A129186*A007318 as infinite lower triangular matrices. - Philippe Deléham, Mar 07 2009
Let n>=0 index the rows and m>=0 index the columns of this rectangular array. R(n,m) is "m multichoose n", the number of multisets of length n on m symbols. R(n,m) = Sum_{i=0..n} R(i,m-1). The summation conditions on the number of members in a size n multiset that are not the element m (an arbitrary element in the set of m symbols). R(n,m) = Sum_{i=1..m} R(n-1,i). The summation conditions on the largest element in a size n multiset on {1,2,...,m}. - Geoffrey Critzer, Jun 03 2009
Sum_{k=0..n} T(n,k)*B(k) = B(n), n>=0, with the Bell numbers B(n):=A000110(n) (eigensequence). See, e.g., the W. Lang link, Corollary 4. - Wolfdieter Lang, Jun 23 2010
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013

Examples

			   1,    1,    1,    1,    1,    1,    1,    1,    1, ...
   0,    1,    2,    3,    4,    5,    6,    7,    8, ...
   0,    1,    3,    6,   10,   15,   21,   28,   36, ...
   0,    1,    4,   10,   20,   35,   56,   84,  120, ...
   0,    1,    5,   15,   35,   70,  126,  210,  330, ...
   0,    1,    6,   21,   56,  126,  252,  462,  792, ...
   0,    1,    7,   28,   84,  210,  462,  924, 1716, ...
   0,    1,    8,   36,  120,  330,  792, 1716, 3432, ...
   0,    1,    9,   45,  165,  495, 1287, 3003, 6435, ...
		

Crossrefs

Main diagonal gives A088218.

Programs

  • Maple
    A:= (n, m)-> binomial(n+m-1, n):
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Jan 13 2017
  • Mathematica
    Table[Table[Binomial[m - 1 + n, n], {m, 0, 10}], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jun 03 2009 *)
    a[n_, m_] := Binomial[m - 1 + n, n]; Table[Table[a[n, m - n], {n, 0, m}], {m, 0, 10}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    { n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+i; v[i][j+k]=v[i-1][j]+i+1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    {a(n) = my(m); if( n<1, n==0, m = (sqrtint(8*n+1) - 1)\2; binomial(m-1, n - m*(m+1)/2))}; /* Michael Somos, Aug 20 2006 */

Formula

Limit_{k->infinity} A071919^k = (A000110,0,0,0,0,...) with the Bell numbers in the first column. For a proof see, e.g., the W. Lang link, proposition 12.
A(n,k) = binomial(n+k-1,n). - Reinhard Zumkeller, Jul 27 2005
G.f.: 1 + x + x^3(1+x) + x^6(1+x)^2 + x^10(1+x)^3 + ... . - Michael Somos, Aug 20 2006
G.f. of the triangular interpretation: (-1+x*y)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015