cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072065 Define a "piece" to consist of 3 mutually touching pennies welded together to form a triangle; sequence gives side lengths of triangles that can be made from such pieces.

Original entry on oeis.org

0, 2, 9, 11, 12, 14, 21, 23, 24, 26, 33, 35, 36, 38, 45, 47, 48, 50, 57, 59, 60, 62, 69, 71, 72, 74, 81, 83, 84, 86, 93, 95, 96, 98, 105, 107, 108, 110, 117, 119, 120, 122, 129, 131, 132, 134, 141, 143, 144, 146, 153, 155, 156, 158, 165, 167, 168, 170, 177, 179, 180
Offset: 1

Views

Author

Jim McCann (jmccann(AT)umich.edu), Aug 04 2002

Keywords

Comments

The "piece" in question is also called a "tribone" [Ardila and Stanley]. - N. J. A. Sloane, Feb 27 2014

Examples

			A possible side-9 arrangement:
          A
         A A
        B B C
       D B C C
      D D E E F
     G H H E F F
    G G H I I J J
   K L L M I N J O
  K K L M M N N O O
		

Crossrefs

Union of A008594, A017545, A017629 and A017653.

Programs

  • Haskell
    a072065 n = a072065_list !! n
    a072065_list = filter ((`elem` [0,2,9,11]) . (`mod` 12)) [0..]
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Maple
    f:=r-> {seq(12*i+r,i=0..100)}; t1:= f(0) union f(2) union f(9) union f(11); t2:=sort(convert(t1,list)); # N. J. A. Sloane, Jul 04 2011
  • Mathematica
    Select[Range[0,200],MemberQ[{0,2,9,11},Mod[#,12]]&] (* Harvey P. Dale, Dec 15 2011 *)
    LinearRecurrence[{1,0,0,1,-1},{0,2,9,11,12},70] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    concat(0, Vec(x^2*(2+7*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100))) \\ Colin Barker, Dec 12 2015

Formula

A number n is in the sequence iff n == 0, 2, 9 or 11 (mod 12). See Conway-Lagarias or the Sillke link. - Sascha Kurz, Mar 04 2003
a(1)=0, a(2)=2, a(3)=9, a(4)=11, a(5)=12, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Jan 30 2015
From Colin Barker, Dec 12 2015: (Start)
a(n) = (3/4+(3*i)/4)*(i^n-i*(-i)^n)-(-1)^n/2+3*(n+1)-5 where i = sqrt(-1).
G.f.: x^2*(2+7*x+2*x^2+x^3) / ((1-x)^2*(1+x)*(1+x^2)). (End)
E.g.f.: (2 + 3*cos(x) + (6*x - 5)*cosh(x) - 3*sin(x) + (6*x - 3)*sinh(x))/2. - Stefano Spezia, May 05 2022
a(n) = (6*n-4-(-1)^n+3*(-1)^((2*n+1-(-1)^n)/4))/2. - Wesley Ivan Hurt, Nov 09 2023

Extensions

Offset corrected by Reinhard Zumkeller, Jan 09 2013