cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008594 Multiples of 12.

Original entry on oeis.org

0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 36 ).
The positive terms are the differences of consecutive star numbers (A003154). - Mihir Mathur, Jun 07 2013
A089911(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2013
a(1) = 12 is a primitive abundant number, thus all a(n), n >= 2, are nonprimitive abundant numbers. - Daniel Forgues, Sep 24 2016

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 11 2011: (Start)
a(n) = 12*n.
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: 12*x/(1-x)^2. (End)
a(n) = A003154(n) - A003154(n-1). - Mihir Mathur, Jun 07 2013
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 12*x*exp(x).
a(n) = 2*A008588(n) = A008606(n)/2. (End)

A017629 a(n) = 12*n + 9.

Original entry on oeis.org

9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
A016946 is the subsequence of squares (for n = 3*k*(k+1) = A028896(k), then a(n) = (6k+3)^2 = A016946(k)). - Bernard Schott, Apr 05 2021

Crossrefs

Programs

Formula

a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023

A017545 a(n) = 12*n + 2.

Original entry on oeis.org

2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 146, 158, 170, 182, 194, 206, 218, 230, 242, 254, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458, 470, 482, 494, 506, 518, 530, 542, 554, 566, 578, 590, 602, 614, 626, 638
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 40 ).

Crossrefs

Subsequence of A072065.

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 2*(1 + 5*x)/(1-x)^2.
E.g.f.: 2*(1 + 6*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/12 + sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021

A017653 a(n) = 12*n + 11.

Original entry on oeis.org

11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143, 155, 167, 179, 191, 203, 215, 227, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467, 479, 491, 503, 515, 527, 539, 551, 563, 575, 587, 599, 611, 623, 635
Offset: 0

Views

Author

Keywords

Comments

Or, with a different offset, 12*n - 1. In any case, numbers congruent to -1 (mod 12). - Alonso del Arte, May 29 2011
Numbers congruent to 2 (mod 3) and 3 (mod 4). - Bruno Berselli, Jul 06 2017

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
G.f.: (11+x)/(1-x)^2. - Colin Barker, Feb 19 2012
A089911(2*a(n)) = 11. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*A003215(n+1) - 1 - 2*A003215(n). See Twin Hexagonal Frames illustration. - Leo Tavares, Aug 19 2021
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(11 + 12*x).
a(n) = A016969(2*n+1). (End)

A074229 Numbers n such that Kronecker(6,n)==mu(gcd(6,n)).

Original entry on oeis.org

1, 5, 19, 23, 25, 29, 43, 47, 49, 53, 67, 71, 73, 77, 91, 95, 97, 101, 115, 119, 121, 125, 139, 143, 145, 149, 163, 167, 169, 173, 187, 191, 193, 197, 211, 215, 217, 221, 235, 239, 241, 245, 259, 263, 265, 269, 283, 287, 289, 293, 307, 311, 313, 317, 331, 335
Offset: 1

Views

Author

Jon Perry, Sep 17 2002

Keywords

Crossrefs

Equals 2 * A072065 + 1.

Programs

  • PARI
    for (x=1,200, for (y=1,200,if (kronecker(x,y)==moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y)))))
    
  • PARI
    isok(n) = kronecker(6, n) == moebius(gcd(6, n)); \\ Michel Marcus, Mar 17 2014
    
  • PARI
    Vec(x*(1+4*x+14*x^2+4*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100)) \\ Colin Barker, Dec 14 2015

Formula

From Colin Barker, Dec 14 2015: (Start)
a(n) = (3/2+(3*i)/2)*(i^n-i*(-i)^n)-(-1)^n+6*(n+1)-9 where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
G.f.: x*(1+4*x+14*x^2+4*x^3+x^4) / ((1-x)^2*(1+x)*(1+x^2)).
(End)

Extensions

More terms from Michel Marcus, Mar 17 2014

A301752 Clique covering number of the n-triangular grid graph.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 13, 15, 19, 22, 26, 31, 35, 41, 46, 52, 58, 64, 71, 77, 85, 92, 100, 109, 117, 127, 136, 146, 156, 166, 177, 187, 199, 210, 222, 235, 247, 261, 274, 288, 302, 316, 331, 345, 361, 376, 392, 409, 425, 443, 460, 478, 496, 514, 533, 551, 571
Offset: 1

Views

Author

Eric W. Weisstein, Mar 26 2018

Keywords

Comments

Maximal cliques are triangles in the n-triangular grid graph. The clique covering number cannot be less than the number of nodes divided by three. Perfect nonoverlapping coverings are possible for n + 1 in A072065. - Andrew Howroyd, Jun 27 2018

Crossrefs

Cf. A072065.

Programs

  • Mathematica
    Table[(Sqrt[3] (16 + 3 n (3 + n)) - 9 Cos[n Pi/6] + 2 Sqrt[3] Cos[2 n Pi/3] + 9 Cos[5 n Pi/6] + 9 Sin[n Pi/6] - 9 Sin[5 n Pi/6])/(18 Sqrt[3]), {n, 20}] (* Eric W. Weisstein, Apr 18 2019 *)
    LinearRecurrence[{2, 0, -1, -2, 2, 1, 0, -2, 1}, {1, 3, 4, 6, 8, 10, 13, 15, 19}, 20] (* Eric W. Weisstein, Apr 18 2019 *)
    CoefficientList[Series[(-1 - x + 2 x^2 + x^3 - x^4 - 2 x^5 + 2 x^7 - x^8)/((-1 + x)^3 (1 + x - x^3 + x^5 + x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 18 2019 *)

Formula

a(n) ~ (n+1)*(n+2)/6. - Andrew Howroyd, Jun 27 2018
a(n) = 2*a(n-1) - a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) - 2*a(n-8) + a(n-9). - Eric W. Weisstein, Apr 18 2019
G.f.: x (-1 - x + 2*x^2 + x^3 - x^4 - 2*x^5 + 2*x^7 - x^8)/((-1 + x)^3*(1 + x - x^3 + x^5 + x^6)). - Eric W. Weisstein, Apr 18 2019

Extensions

a(11)-a(24) from Andrew Howroyd, Jun 27 2018
More terms from Georg Fischer, Jun 04 2019

A334875 Number of tribone tilings of an n-triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 8, 12, 0, 72, 0, 0, 0, 0, 0, 0, 185328, 0, 4736520, 21617456, 0, 912370744, 0, 0, 0, 0, 0, 0, 3688972842502560, 0, 717591590174000896, 9771553571471569856, 0, 3177501183165726091520, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Jonathan Oswald, May 13 2020

Keywords

Comments

This sequence was requested to be added by the author of the link Code Golf challenge. It is based on the work of J. H. Conway, who proved that n = 12k + 0,2,9,11 if and only if T(n) can be tiled (i.e., exactly covered without overlapping) by tribones.

Crossrefs

The sequence of nonzero indices is A072065.
Cf. A155219.

Programs

  • Python
    # tribone tilings
    def h(coords):
      def anyhex(i, j):
        c = [x in coords for x in [(i-1, j), (i, j+1), (i+1, j+1), (i+1, j), (i, j-1), (i-1, j-1)]]
        return any(map(lambda x, y: x and y, c, c[1:] + c[:1]))
      return all(anyhex(*z) for z in coords)
    def g(coords):
      if not coords: return 1
      #if not h(coords): return 0
      i, j = min(coords)
      if (i+1, j+1) not in coords: return 0
      cases = 0
      if (i+1, j) in coords: cases += g(coords - {(i, j), (i+1, j), (i+1, j+1)})
      if (i, j+1) in coords: cases += g(coords - {(i, j), (i, j+1), (i+1, j+1)})
      return cases
    def f(n):
      coords = {(i, j) for i in range(n) for j in range(i+1)}
      #if n%12 not in [0, 2, 9, 11]: return 0
      print(n, g(coords) if n%12 in [0, 2, 9, 11] else 0)
    [f(x) for x in range(21)]

Extensions

Name clarified by James Propp, Mar 28 2022
Showing 1-7 of 7 results.