cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A004767 a(n) = 4*n + 3.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12).
Binary expansion ends 11.
These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro, Dec 16 2004 [This comment needs clarification]
a(n) is the smallest k such that for every r from 0 to 2n - 1 there exist j and i, k >= j > i > 2n - 1, such that j - i == r (mod (2n - 1)), with (k, (2n - 1)) = (j,(2n - 1)) = (i, (2n - 1)) = 1. - Amarnath Murthy, Sep 24 2003
Complement of A004773. - Reinhard Zumkeller, Aug 29 2005
Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n + 2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008
Solutions to the equation x^(2*x) = 3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010
Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010
First differences of A084849. - Reinhard Zumkeller, Apr 02 2011
Numbers n such that {1, 2, 3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011
Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012
The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013
A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013
All triangular numbers in the sequence are congruent to {3, 7} mod 8. - Ivan N. Ianakiev, Nov 12 2013
Apart from the initial term, length of minimal path on an n-dimensional cubic lattice (n > 1) of side length 2, until a self-avoiding walk gets stuck. Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n - 1 points, resulting in path length 4n - 2 with a final step connecting the center, for a total path length of 4n - 1, comprising 4n points. - Matthew Lehman, Dec 10 2013
a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and greater than a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016

Examples

			G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.

Crossrefs

Cf. A017101 and A004771 (bisection: 3 and 7 mod 8).
Cf. A016838 (square).

Programs

Formula

G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008
a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010
a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010
a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011
a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012
a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013
a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013
a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (3 + 4*x)*exp(x).
Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2) - 1))/(4*sqrt(2)) = A181049. (End)

A017137 a(n) = 8*n + 6.

Original entry on oeis.org

6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 382, 390, 398, 406, 414, 422, 430
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

First differences of A002943. - Aaron David Fairbanks, May 13 2014

Examples

			G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
		

Crossrefs

Programs

Formula

a(n) = 2*A004767(n) = A000290(A017245(n)) - A156676(n+1). - Reinhard Zumkeller, Jul 13 2010
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
A089911(3*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
From Michael Somos, May 15 2014: (Start)
G.f.: (6 + 2*x)/(1 - x)^2.
E.g.f.: (6 + 8*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(8*sqrt(2)). - Amiram Eldar, Dec 11 2021
a(n) = A016825(2*n+1). - Elmo R. Oliveira, Apr 12 2025

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A278507 Square array A(row,col) where row n lists the numbers removed in round n of Flavius sieve. Array is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 5, 6, 11, 9, 8, 17, 21, 15, 10, 23, 33, 37, 25, 12, 29, 45, 55, 51, 31, 14, 35, 57, 75, 85, 73, 43, 16, 41, 69, 97, 111, 121, 99, 61, 18, 47, 81, 115, 145, 159, 151, 127, 67, 20, 53, 93, 135, 171, 199, 211, 193, 163, 87, 22, 59, 105, 157, 205, 243, 267, 271, 247, 187, 103, 24, 65, 117, 175, 231, 283, 319, 343, 339, 303, 229, 123
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2016

Keywords

Examples

			The top left corner of the array:
   2,   4,   6,   8,  10,  12,  14,  16,  18,   20
   5,  11,  17,  23,  29,  35,  41,  47,  53,   59
   9,  21,  33,  45,  57,  69,  81,  93, 105,  117
  15,  37,  55,  75,  97, 115, 135, 157, 175,  195
  25,  51,  85, 111, 145, 171, 205, 231, 265,  291
  31,  73, 121, 159, 199, 243, 283, 327, 367,  409
  43,  99, 151, 211, 267, 319, 379, 433, 487,  547
  61, 127, 193, 271, 343, 421, 483, 559, 631,  699
  67, 163, 247, 339, 427, 519, 607, 691, 793,  879
  87, 187, 303, 403, 523, 639, 739, 853, 963, 1081
		

Crossrefs

Transpose: A278508.
This is array A278505 without its leftmost column, A000960.
Column 1: A100287 (apart from its initial 1).
Cf. A278529 (column index of n), A278538 (row index of n).
Cf. A278492.
Cf. A255543 for analogous array for Lucky sieve.

Programs

Formula

A(1,col) = 2*col; for row > 1, A(row,col) = A278492(row-1,(col*(row+1))-1). [Note that unlike this array, A278492 uses zero-based indexing for its rows and columns.]

A072065 Define a "piece" to consist of 3 mutually touching pennies welded together to form a triangle; sequence gives side lengths of triangles that can be made from such pieces.

Original entry on oeis.org

0, 2, 9, 11, 12, 14, 21, 23, 24, 26, 33, 35, 36, 38, 45, 47, 48, 50, 57, 59, 60, 62, 69, 71, 72, 74, 81, 83, 84, 86, 93, 95, 96, 98, 105, 107, 108, 110, 117, 119, 120, 122, 129, 131, 132, 134, 141, 143, 144, 146, 153, 155, 156, 158, 165, 167, 168, 170, 177, 179, 180
Offset: 1

Views

Author

Jim McCann (jmccann(AT)umich.edu), Aug 04 2002

Keywords

Comments

The "piece" in question is also called a "tribone" [Ardila and Stanley]. - N. J. A. Sloane, Feb 27 2014

Examples

			A possible side-9 arrangement:
          A
         A A
        B B C
       D B C C
      D D E E F
     G H H E F F
    G G H I I J J
   K L L M I N J O
  K K L M M N N O O
		

Crossrefs

Union of A008594, A017545, A017629 and A017653.

Programs

  • Haskell
    a072065 n = a072065_list !! n
    a072065_list = filter ((`elem` [0,2,9,11]) . (`mod` 12)) [0..]
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Maple
    f:=r-> {seq(12*i+r,i=0..100)}; t1:= f(0) union f(2) union f(9) union f(11); t2:=sort(convert(t1,list)); # N. J. A. Sloane, Jul 04 2011
  • Mathematica
    Select[Range[0,200],MemberQ[{0,2,9,11},Mod[#,12]]&] (* Harvey P. Dale, Dec 15 2011 *)
    LinearRecurrence[{1,0,0,1,-1},{0,2,9,11,12},70] (* Harvey P. Dale, Jan 30 2015 *)
  • PARI
    concat(0, Vec(x^2*(2+7*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100))) \\ Colin Barker, Dec 12 2015

Formula

A number n is in the sequence iff n == 0, 2, 9 or 11 (mod 12). See Conway-Lagarias or the Sillke link. - Sascha Kurz, Mar 04 2003
a(1)=0, a(2)=2, a(3)=9, a(4)=11, a(5)=12, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Jan 30 2015
From Colin Barker, Dec 12 2015: (Start)
a(n) = (3/4+(3*i)/4)*(i^n-i*(-i)^n)-(-1)^n/2+3*(n+1)-5 where i = sqrt(-1).
G.f.: x^2*(2+7*x+2*x^2+x^3) / ((1-x)^2*(1+x)*(1+x^2)). (End)
E.g.f.: (2 + 3*cos(x) + (6*x - 5)*cosh(x) - 3*sin(x) + (6*x - 3)*sinh(x))/2. - Stefano Spezia, May 05 2022
a(n) = (6*n-4-(-1)^n+3*(-1)^((2*n+1-(-1)^n)/4))/2. - Wesley Ivan Hurt, Nov 09 2023

Extensions

Offset corrected by Reinhard Zumkeller, Jan 09 2013

A098502 a(n) = 16*n - 4.

Original entry on oeis.org

12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, 572, 588, 604, 620, 636, 652, 668, 684, 700, 716, 732, 748, 764, 780, 796, 812, 828, 844
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

Crossrefs

Programs

Formula

G.f.: 4*x*(3+x)/(1-x)^2. - Colin Barker, Jan 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - Amiram Eldar, Sep 01 2024
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = 4*A004767(n-1) = 2*A017137(n-1) = A017113(2*n-1). (End)

A096022 Numbers that are congruent to {15, 27, 39, 51} mod 60.

Original entry on oeis.org

15, 27, 39, 51, 75, 87, 99, 111, 135, 147, 159, 171, 195, 207, 219, 231, 255, 267, 279, 291, 315, 327, 339, 351, 375, 387, 399, 411, 435, 447, 459, 471, 495, 507, 519, 531, 555, 567, 579, 591, 615, 627, 639, 651, 675, 687, 699, 711, 735, 747, 759, 771, 795
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 2 and (n+3) mod 5 <> 1.
This is one of a family of sequences which are defined (or could be defined) according to the same scheme: Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to k-1 and (n+k) mod (2+k) <> 1. We have A007310 for k = 1, A017629 for k = 2, this one (A096022) for k = 3, A096023 for k = 5, A096024 for k = 6, A096025 for k = 7, A096026 for k = 9, A096027 for k = 11. Remarkably these sequences are empty for k = 4, 8, 10, ... (i.e., if k+1 is a term of A080765).
Numbers n such that n mod 12 = 3 and n mod 60 <> 3.
Subsequence of A017557: 12n+3.

Examples

			51 mod 2 = 52 mod 3 = 53 mod 4 = 1 and 54 mod 5 = 4, hence 51 is in the sequence; 3 mod 2 = 4 mod 3 = 5 mod 4 = 6 mod 5 = 1, hence 3 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [ n : n in [1..1500] | n mod 60 in [15, 27, 39, 51] ] // Vincenzo Librandi, Mar 24 2011
  • Maple
    A096022:=n->3*(10*n-3-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/2: seq(A096022(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    Table[3*(10n-3-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/2, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
  • PARI
    {k=3;m=800;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(5+4*x+4*x^2+4*x^3+3*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 3*(10*n-3-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1). (End)
E.g.f.: 3*(3 + sin(x) - cos(x) + (5*x - 1)*sinh(x) - (2 - 5*x)*cosh(x)). - Ilya Gutkovskiy, Jun 05 2016

Extensions

New definition from Ralf Stephan, Dec 01 2004

A096023 Numbers congruent to {63, 123, 183, 243, 303, 363} mod 420.

Original entry on oeis.org

63, 123, 183, 243, 303, 363, 483, 543, 603, 663, 723, 783, 903, 963, 1023, 1083, 1143, 1203, 1323, 1383, 1443, 1503, 1563, 1623, 1743, 1803, 1863, 1923, 1983, 2043, 2163, 2223, 2283, 2343, 2403, 2463, 2583, 2643, 2703, 2763, 2823, 2883, 3003, 3063, 3123
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 4 and (n+5) mod 7 <> 1.
Numbers n such that n mod 60 = 3 and n mod 420 <> 3.

Examples

			63 mod 2 = 64 mod 3 = 65 mod 4 = 66 mod 5 = 67 mod 6 = 1 and 68 mod 7 = 5, hence 63 is in the sequence.
		

Crossrefs

Cf. A047391 (see MAGMA code). - Bruno Berselli, Mar 25 2011

Programs

  • Magma
    [ n : n in [1..3500] | n mod 420 in [63, 123, 183, 243, 303, 363] ] // Vincenzo Librandi, Mar 24 2011
    
  • Magma
    /* Alternatively:*/ &cat[ [ 60*n+3, 60*n+63 ]: n in [1..52] | n mod 7 in [1,3,5] ]; // Bruno Berselli, Mar 25 2011
  • Maple
    A096023:=n->420*floor(n/6)+[63, 123, 183, 243, 303, 363][(n mod 6)+1]: seq(A096023(n), n=0..80); # Wesley Ivan Hurt, Jul 22 2016
  • Mathematica
    Select[Range[0, 5*10^3], MemberQ[{63, 123, 183, 243, 303, 363}, Mod[#, 420]] &] (* Wesley Ivan Hurt, Jul 22 2016 *)
  • PARI
    {k=5;m=3150;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(21+20*x+20*x^2+20*x^3+20*x^4+20*x^5+19*x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7; a(n) = a(n-6) + 420 for n>6.
a(n) = (210*n - 96 - 30*cos(n*Pi/3) - 30*cos(2*n*Pi/3) - 15*cos(n*Pi) + 30*sqrt(3)*sin(n*Pi/3) + 10*sqrt(3)*sin(2*n*Pi/3))/3.
a(6k) = 420k-57, a(6k-1) = 420k-117, a(6k-2) = 420k-177, a(6k-3) = 420k-237, a(6k-4) = 420k-297, a(6k-5) = 420k-357. (End)

Extensions

New definition from Ralf Stephan, Dec 01 2004

A096026 Numbers k such that (k+j) mod (2+j) = 1 for j from 0 to 8 and (k+9) mod 11 <> 1.

Original entry on oeis.org

2523, 5043, 7563, 10083, 12603, 15123, 17643, 20163, 22683, 25203, 30243, 32763, 35283, 37803, 40323, 42843, 45363, 47883, 50403, 52923, 57963, 60483, 63003, 65523, 68043, 70563, 73083, 75603, 78123, 80643, 85683, 88203, 90723, 93243
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers k such that k mod 2520 = 3 and k mod 27720 <> 3.

Examples

			2523 mod 2 = 2524 mod 3 = 2525 mod 4 = 2526 mod 5 = 2527 mod 6 = 2528 mod 7 = 2529 mod 8 = 2530 mod 9 = 2531 mod 10 = 1 and 2532 mod 11 = 2, hence 2523 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | forall{j: j in [0..8] | IsOne((n+j) mod (2+j)) and (n+9) mod 11 ne 1}]; // Bruno Berselli, Apr 11 2013
  • Mathematica
    Select[Range[94000],Union[Mod[#+Range[0,8],Range[2,10]]]=={1}&&Mod[ #+9,11]!=1&] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{2523,5043,7563,10083,12603,15123,17643,20163,22683,25203,30243},40](* Harvey P. Dale, Sep 25 2019 *)
  • PARI
    {k=9;m=95000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(839*x^10 +840*x^9 +840*x^8 +840*x^7 +840*x^6 +840*x^5 +840*x^4 +840*x^3 +840*x^2 +840*x +841) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 11 2013

A096024 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 5 and (n+6) mod 8 <> 1.

Original entry on oeis.org

423, 1263, 2103, 2943, 3783, 4623, 5463, 6303, 7143, 7983, 8823, 9663, 10503, 11343, 12183, 13023, 13863, 14703, 15543, 16383, 17223, 18063, 18903, 19743, 20583, 21423, 22263, 23103, 23943, 24783, 25623, 26463, 27303, 28143, 28983, 29823
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that n mod 840 = 423.

Examples

			423 mod 2 = 424 mod 3 = 425 mod 4 = 426 mod 5 = 427 mod 6 = 428 mod 7 = 1 and 429 mod 8 = 5, hence 423 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..30000] | forall{j: j in [0..5] | IsOne((n+j) mod (2+j)) and (n+6) mod 8 ne 1}]; // Bruno Berselli, Apr 11 2013
  • PARI
    {k=6;m=30000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

a(n) = 2*a(n-1)-a(n-2). G.f.: 3*x*(139*x+141) / (x-1)^2. - Colin Barker, Apr 11 2013
a(n) = 840*n-417. [Bruno Berselli, Apr 11 2013]
Showing 1-10 of 20 results. Next