cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A072083 Numbers divisible by the 4th power of the sum of their digits in base 10.

Original entry on oeis.org

1, 10, 100, 1000, 2000, 2401, 5000, 10000, 13122, 20000, 24010, 50000, 100000, 110000, 131220, 140000, 190000, 200000, 230000, 234256, 240100, 280000, 320000, 370000, 390625, 400221, 410000, 460000, 500000, 512000, 550000, 614656, 640000
Offset: 1

Views

Author

Labos Elemer, Jun 14 2002

Keywords

Comments

If k is a term, then 10*k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(294*k - 292) + 1, k = 7*a - 6, a >= 1, are divisible by 7^4 = digsum(m)^4. Also, the numbers s = 491 * 10^(4624*k - 4623) + 3, k = 17*u - 11, u >= 1, are divisible by 17^4 = digsum(s)^4. - Marius A. Burtea, Mar 19 2020
The numbers 2^A095412(n), n >= 6, are terms. - Marius A. Burtea, Apr 02 2020

Examples

			k=614656: sumdigits(614656)=28, q=1, since k=28*28*28*28.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..640000]| k mod &+Intseq(k)^4 eq 0]; // Marius A. Burtea, Mar 19 2020
    
  • Mathematica
    sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^4; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
    Select[Range[700000],Divisible[#,Total[IntegerDigits[ #]]^4]&] (* Harvey P. Dale, Jun 28 2011 *)
  • PARI
    isok(m) = (m % sumdigits(m)^4) == 0; \\ Michel Marcus, Apr 02 2020

A072408 Least number > 1 which equals n-th power of the sum of its digits in decimal base.

Original entry on oeis.org

2, 81, 512, 2401, 17210368, 34012224, 612220032, 20047612231936, 3904305912313344, 13744803133596058624, 8007313507497959524352, 2518170116818978404827136, 81920000000000000, 2670419511272061205254504361, 2759031540715333904109053133443
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Examples

			a(1) = 2 > 1;
a(9) = 3904305912313344 = 54^9 = (3+9+0+4+3+0+5+9+1+2+3+1+3+3+4+4)^9.
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 2}, While[k^# != Total[IntegerDigits[k^#]]^#, k++]; k^#] &, 13] (* Michael De Vlieger, Nov 05 2020 *)

Formula

a(n) = Min{ x; x=SumDigit(x)^n} = Min{x; x=A007953(x)^n}
a(n) = A046017(n)^n. - Michael De Vlieger, Nov 05 2020

A379980 Numbers that are divisible by the square of the sum of the squares of their digits.

Original entry on oeis.org

1, 10, 100, 1000, 1100, 1200, 1300, 2000, 2023, 2100, 2400, 3100, 4332, 5000, 10000, 10100, 10200, 10300, 11000, 12000, 13000, 20000, 20100, 20230, 20400, 21000, 24000, 30100, 30324, 31000, 31311, 42000, 43011, 43320, 50000, 52022, 52215, 55000, 71824, 100000
Offset: 1

Views

Author

Amiram Eldar, Jan 07 2025

Keywords

Comments

Called "Second-order Harshad numbers" by Pal and Gopalan (2023).
If k is a term, then 10*k is also a term.

Examples

			10 is a term since 10 is divisible by (1^2 + 0^2)^2 = 1.
1100 is a term since 1100 is divisible by (1^2 + 1^2 + 0^2 + 0^2)^2 = 4.
		

Crossrefs

Cf. A003132, A005349, A072081, A180490 (binary analog).
Subsequence of A034087.
Subsequences: A379981, A379982.

Programs

  • Mathematica
    Select[Range[10^5], Divisible[#, (Plus @@ (IntegerDigits[#]^2))^2] &]
  • PARI
    isok(k) = !(k % vecsum(apply(x -> x^2, digits(k)))^2);
    
  • Python
    def ok(n): return n and n%sum(di**2 for di in map(int, str(n)))**2 == 0
    print([k for k in range(100001) if ok(k)]) # Michael S. Branicky, Jan 10 2025

A072082 Numbers divisible by the cube of the sum of their digits in base 10.

Original entry on oeis.org

1, 10, 100, 200, 500, 512, 1000, 2000, 2401, 4913, 5000, 5103, 5120, 5832, 10000, 10206, 11000, 11200, 11664, 13122, 14000, 17576, 19000, 19683, 20000, 20412, 21141, 23000, 23328, 24010, 28000, 29160, 32000, 37000, 39366, 40000, 40824
Offset: 1

Views

Author

Labos Elemer, Jun 14 2002

Keywords

Comments

If k is a term, then 10 * k is a term. There are an infinite number of terms that are not divisible by 10. The numbers m = 24 * 10^(294 * k - 292) +1 are divisible by 7^3 = digsum(m)^3. Also, the numbers s = 491 * 10^(4624 * k - 4623) + 3, k >= 1, are divisible by 17^3 = digsum(s)^3. - Marius A. Burtea, Mar 18 2020

Examples

			k=98415: sumdigits(98415)=27, q=98415=5*27*27*27.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..41000]| k mod &+Intseq(k)^3 eq 0]; // Marius A. Burtea, Mar 18 2020
    
  • Mathematica
    sud[x_] := Apply[Plus, IntegerDigits[x]] Do[s=sud[n]^3; If[IntegerQ[n/s], Print[n]], {n, 1, 10000}]
    Select[Range[50000],Divisible[#,Total[IntegerDigits[#]]^3]&] (* Harvey P. Dale, Mar 22 2016 *)
  • PARI
    is(n)=n%sumdigits(n)^3==0 \\ Charles R Greathouse IV, Mar 19 2020

A169662 Numbers divisible by the sum of their digits, and by the sum of their digits squared, by the sum of their digits cubed and by the sum of 4th powers of their digits.

Original entry on oeis.org

1, 10, 100, 110, 111, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 5000, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 20000, 50000, 55000, 100000, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101010, 101100
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Comments

The numbers such that all digits are nonzero are rare (see the subsequence A176194).

Examples

			1121211 is a term since 1^4 + 1^4 + 2^4 + 1^4 + 2^4 + 1^4 + 1^4 = 37 and 1121211 = 37*30303 ; 1^3 + 1^3 + 2^3 + 1^3 + 2^3 + 1^3 + 1^3 = 21 and 1121211 = 21*53391 ; 1^2 + 1^2 + 2^2 + 1^2 + 2^2 + 1^2 + 1^2 = 13 and 1121211 = 13* 86247 ; 1 + 1 + 2 + 1 + 2 + 1 + 1 = 9 and 1121211 = 9*124579.
		

Crossrefs

Intersection of A005349, A034087, A034088 and A169665.

Programs

  • Maple
    isA169662 := proc(n)
            dgs := convert(n,base,10) ;
            if (n mod ( add(d,d=dgs) ) = 0)  and (n mod (add(d^2,d=dgs) )) =0 and (n mod (add(d^3,d=dgs))) =0 and (n mod (add(d^4,d=dgs))) = 0 then
                    true;
            else
                    false;
            end if;
    end proc:
    for i from 1 to 110000 do
            if isA169662(i) then
                    printf("%d,",i) ;
            end if;
    end do: # R. J. Mathar, Nov 07 2011
  • Mathematica
    q[n_] := And @@ Divisible[n, Plus @@@ Transpose @ Map[#^Range[4] &, IntegerDigits[n]]]; Select[Range[10^5], q] (* Amiram Eldar, Jan 31 2021 *)

Formula

{n : A007953(n)|n and A003132(n)|n and A055012(n)| n and A055013(n)| n}.

A176194 Numbers with no zero digits divisible by the sum of the k-th powers of their digits, for each k = 1,2,3,4.

Original entry on oeis.org

1, 111, 1121211, 11243232, 12132432, 12413232, 22331232, 23111352, 23411232, 24113232, 41223312, 42131232, 44662464, 111111111, 112452144, 114251424, 135964224, 211412544, 246134592, 313212312, 332131212, 382941675, 416283624, 442114512, 523173456, 671635575, 979652772
Offset: 1

Views

Author

Michel Lagneau, Apr 11 2010

Keywords

Comments

For the numbers divisible by the sum of k-th powers of digits including 0, see A169662. The numbers such that the digits are > 0 are rare.

Examples

			For n = 246134592 we obtain :
2^4 + 4^4 + 6^4 + 1^4 + 3^4 + 4^4 + 5^4 + 9^4 + 2^4 = 9108, and 246134592 = 9108*27024 ;
2^3 + 4^3 + 6^3 + 1^3 + 3^3 + 4^3 + 5^3 + 9^3 + 2^3 = 1242, and 246134592 = 1242*198176 ;
2^2 + 4^2 + 6^2 + 1^2 + 3^2 + 4^2 + 5^2 + 9^2 + 2^2 = 192, and 246134592 = 192*1281951 ;
2 + 4 + 6 + 1 + 3 + 4 + 5 + 9 + 2 = 36, and 246134592 = 36*6837072.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 2 to 500000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:s3:=0:s4:=0:p:=1:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:p:=p*u:s2:=s2+u^2:s3:=s3+u^3:s4:=s4+u^4: od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 and irem(n,s4)=0 and p<>0 then print(n):else fi:od:

Formula

A007953 (n)|n and A003132(n)|n and A055012 (n)| n and A055013 (n)| n and all digits < > 0.

Extensions

a(1)-a(2) and more terms add by Amiram Eldar, Apr 20 2023

A169663 Numbers k divisible by the sum of the digits and the sum of the squares of digits of k (in base 10).

Original entry on oeis.org

1, 10, 20, 50, 100, 110, 111, 120, 133, 200, 210, 240, 315, 360, 372, 400, 420, 480, 500, 550, 630, 803, 1000, 1010, 1011, 1020, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1300, 1302, 1330, 1344, 1431, 1547, 2000, 2010, 2023, 2040, 2100, 2196, 2200, 2220
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			For k = 2196, 2^2 + 1^2 + 9^2 + 6^2 = 122, 2 + 1 + 9 + 6 = 18, and 2196 = 18*122 so it is divisible by both 18 and 122.
		

Crossrefs

Intersection of A005349 and A034087.

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:od:if irem(n,s1)=0 and irem(n,s2)=0 then print(n):else fi:od:
  • Mathematica
    Select[Range[2220], Divisible[#, Plus @@ (d = IntegerDigits[#])] && Divisible[#, Plus @@ (d^2)] &] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    sd2(n) = my(d=digits(n)); sum(i=1, #d, d[i]^2);
    isok(n) = !(n % sumdigits(n)) && !(n % sd2(n)); \\ Michel Marcus, Dec 21 2014

Formula

A007953(k)|k and A003132(k)|k.

A169664 Numbers k divisible respectively by the sum of digits, the sum of the squares and the sum of the cubes of digits in base 10 of k.

Original entry on oeis.org

1, 10, 100, 110, 111, 200, 500, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 2352, 5000, 5500, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 11112, 20000, 22000, 22200, 23520, 25032, 25110, 30100, 40000, 41013, 44160, 50000
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			For k = 174192, 1^3 + 7^3 + 4^3 + 1^3 + 9^3 + 2^3 = 1146, and 174192 = 152*1146; 1^2 + 7^2 + 4^2 + 1^2 + 9^2 + 2^2 = 152, and 174192 = 152*1146; 1 + 7 + 4 + 1 + 9 + 2 = 24, and 174192 = 24*7258.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 200000 do:l:=evalf(floor(ilog10(n))+1) : n0:=n:s1:=0:s2:=0: s3:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 then print(n):else fi:od:
  • Mathematica
    dsQ[n_]:=Module[{idn=IntegerDigits[n]}, Divisible[n,Total[idn]] && Divisible[n,Total[idn^2]] && Divisible[n,Total[idn^3]]]; Select[Range[50000],dsQ]  (* Harvey P. Dale, Feb 24 2011 *)

Formula

A007953(k)|k and A003132(k)|k and A055012(k)| k.

A243008 Triangular numbers divisible by the square of the sum of their digits.

Original entry on oeis.org

1, 10, 3240, 3321, 13041, 13203, 15400, 65341, 80200, 90100, 161028, 210276, 260281, 265356, 266085, 300700, 346528, 500500, 937765, 947376, 1043290, 1228528, 1313010, 1628110, 2049300, 2390391, 2421100, 3357936, 3746953, 4020030, 5250420, 6641190, 6857956, 6939675
Offset: 1

Views

Author

K. D. Bajpai, Aug 20 2014

Keywords

Comments

Intersection of A000217 and A072081.

Examples

			a(3) = 3240 = 80 * (80 + 1)/2 is a triangular number. Since 3240 is divisible by (3 + 2 + 4 + 0)^2 = 81, it appears in the sequence.
a(3) = 3321 = 81 * (81 + 1)/2 is a triangular number. Since 3321 is divisible by (3 + 3 + 2 + 1)^2 = 81, it appears in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n*(n + 1)/2, {n, 10000}], Divisible[#, Plus @@ IntegerDigits[#]^2] &]
  • PARI
    for(n=1,10^4,s=n*(n+1)/2;if(s%(sumdigits(s)^2)==0,print1(s,", "))) \\ Derek Orr, Aug 23 2014
Showing 1-9 of 9 results.