cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072113 Continued fraction expansion of Hall and Tenenbaum constant.

Original entry on oeis.org

0, 3, 23, 1, 1, 16, 1, 2, 1, 8, 1, 274, 3, 1, 5, 1, 2, 1, 16, 1, 3, 3, 2, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 16, 3, 3, 2, 1, 1, 1, 2, 69, 121, 1, 5, 1, 2, 1, 2, 1, 1, 1, 2, 1, 12, 4, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 1, 7, 1, 16, 2, 4, 1, 2, 7, 2, 3, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality ( Hall and Tenenbaum, 1991).

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.

Crossrefs

Cf. A072112 (decimal expansion).

Programs

  • PARI
    \p200;
    contfrac(cos(solve(X=0,2*Pi,sin(X)+(Pi-X)*cos(X)-Pi/2)))

Formula

K = cos(S) = 0.3287... where S it the root 0< S < 2Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024