A072197 a(n) = 4*a(n-1) + 1 with a(0) = 3.
3, 13, 53, 213, 853, 3413, 13653, 54613, 218453, 873813, 3495253, 13981013, 55924053, 223696213, 894784853, 3579139413, 14316557653, 57266230613, 229064922453, 916259689813, 3665038759253, 14660155037013, 58640620148053, 234562480592213, 938249922368853, 3752999689475413
Offset: 0
Examples
a(1) = 13 because a(0) = 3 and 4 * 3 + 1 = 13. a(2) = 53 because a(1) = 13 and 4 * 13 + 1 = 53. a(3) = 213 because a(2) = 53 and 4 * 53 + 1 = 213.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Petro Kosobutskyy and Volodymyr Karkulovskyy, Recurrence and structuring of sequences of transformations 3n+ 1 as arguments for confirmation of the Collatz hypothesis, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, pp. 28-33. See p. 29.
- Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, pp. 121-127.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
- Index entries for sequences related to 3x+1 (or Collatz) problem.
Crossrefs
Programs
-
Magma
[(10*4^n-1)/3: n in [0..30]]; // Vincenzo Librandi, Oct 31 2011
-
Maple
A072197:=n->(10*4^n - 1)/3: seq(A072197(n), n=0..30); # Wesley Ivan Hurt, Sep 29 2016
-
Mathematica
Table[(10(4^n) - 1)/3, {n, 0, 19}] (* Alonso del Arte, Nov 22 2012 *) NestList[4#+1&,3,30] (* Harvey P. Dale, Mar 09 2019 *)
-
PARI
a(n)=10*4^n\3 \\ Charles R Greathouse IV, Apr 06 2016
-
PARI
Vec((3-2*x)/((1-x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Sep 28 2016
Formula
a(n) = (10*4^n - 1)/3 = 10*A002450(n) + 3. - Henry Bottomley, Dec 02 2002
a(n) = 5*a(n-1) - 4*a(n-2), n > 1. - Vincenzo Librandi, Oct 31 2011
a(n) = 2^(2*(n + 1)) - (2^(2*n + 1) + 1)/3 = A000302(n + 1) - A007583(n). - Vladimir Pletser, Apr 12 2014
a(n) = (5*2^(2*n + 1) - 1)/3. - Bob Selcoe, Apr 03 2015
G.f.: (3-2*x)/((1-x)*(1-4*x)). - Colin Barker, Sep 28 2016
a(n) = A020988(n) + A020988(n+1) + 1 = 2*(A002450(n) + A002450(n+1)) + 1. - Yosu Yurramendi, Jan 24 2017
a(n) = A002450(n+1) + 2^(2*n+1). - Adam Michael Bere, May 13 2021
a(n) = a(n-1) + 5*2^(2*n-1), for n >= 1, with a(0) = 3. - Wolfdieter Lang, Aug 16 2021
E.g.f.: exp(x)*(10*exp(3*x) - 1)/3. - Elmo R. Oliveira, Apr 02 2025
Extensions
More terms from Henry Bottomley, Dec 02 2002
Comments