cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A007583 a(n) = (2^(2*n + 1) + 1)/3.

Original entry on oeis.org

1, 3, 11, 43, 171, 683, 2731, 10923, 43691, 174763, 699051, 2796203, 11184811, 44739243, 178956971, 715827883, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 2932031007403, 11728124029611, 46912496118443, 187649984473771, 750599937895083
Offset: 0

Views

Author

Keywords

Comments

Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)-w(k), v(k+1)=u(k)-v(k)+w(k), w(k+1)=-u(k)+v(k)+w(k); let M(k)=Max(u(k),v(k),w(k)); then a(n)=M(2n)=M(2n-1). - Benoit Cloitre, Mar 25 2002
Also the number of words of length 2n generated by the two letters s and t that reduce to the identity 1 by using the relations ssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the dihedral group D6=C2xD3. - Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002
Binomial transform of A025192. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_6. Example: a(1)=3 because in the cycle ABCDEF we have three walks of length 3 between A and B: ABAB, ABCB and AFAB. - Emeric Deutsch, Apr 01 2004
Numbers of the form 1 + Sum_{i=1..m} 2^(2*i-1). - Artur Jasinski, Feb 09 2007
Prime numbers of the form 1+Sum[2^(2n-1)] are in A000979. Numbers x such that 1+Sum[2^(2n-1)] is prime for n=1,2,...,x is A127936. - Artur Jasinski, Feb 09 2007
Related to A024493(6n+1), A131708(6n+3), A024495(6n+5). - Paul Curtz, Mar 27 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Number of toothpicks in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Feb 28 2011
Numbers whose binary representation is "10" repeated (n-1) times with "11" appended on the end, n >= 1. For example 171 = 10101011 (2). - Omar E. Pol, Nov 22 2012
a(n) is the smallest number for which A072219(a(n)) = 2*n+1. - Ramasamy Chandramouli, Dec 22 2012
An Engel expansion of 2 to the base b := 4/3 as defined in A181565, with the associated series expansion 2 = b + b^2/3 + b^3/(3*11) + b^4/(3*11*43) + .... Cf. A007051. - Peter Bala, Oct 29 2013
The positive integer solution (x,y) of 3*x - 2^n*y = 1, n>=0, with smallest x is (a(n/2), 2) if n is even and (a((n-1)/2), 1) if n is odd. - Wolfdieter Lang, Feb 15 2014
The smallest positive number that requires at least n additions and subtractions of powers of 2 to be formed. See Puzzling StackExchange link. - Alexander Cooke Jul 16 2023

References

  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, (1.77), page 10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A081294.
Cf. location of records in A007302.

Programs

  • GAP
    List([0..25], n-> (2^(2*n+1) + 1)/3); # G. C. Greubel, Dec 25 2019
  • Haskell
    a007583 = (`div` 3) . (+ 1) . a004171
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Magma
    [(2^(2*n+1) + 1)/3: n in [0..30] ]; // Vincenzo Librandi, Apr 28 2011
    
  • Maple
    a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-1 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008, with correction by K. Spage, Aug 20 2014
    A007583 := proc(n)
        (2^(2*n+1)+1)/3 ;
    end proc: # R. J. Mathar, Feb 19 2015
  • Mathematica
    (* From Michael De Vlieger, Aug 22 2016 *)
    Table[(2^(2n+1) + 1)/3, {n, 0, 23}]
    Table[1 + 2Sum[4^k, {k, 0, n-1}], {n, 0, 23}]
    NestList[4# -1 &, 1, 23]
    Table[Sum[Binomial[n+k, 2k]/2^(k-n), {k, 0, n}], {n, 0, 23}]
    CoefficientList[Series[(1-2x)/(1-5x+4x^2), {x, 0, 23}], x] (* End *)
  • PARI
    a(n)=sum(k=-n\3,n\3,binomial(2*n+1,n+1+3*k))
    
  • PARI
    a=1; for(n=1,23, print1(a,", "); a=bitor(a,3*a)) \\ K. Spage, Aug 20 2014
    
  • PARI
    Vec((1-2*x)/(1-5*x+4*x^2) + O(x^30)) \\ Altug Alkan, Dec 08 2015
    
  • PARI
    apply( {A007583(n)=2<<(2*n)\/3}, [0..25]) \\ M. F. Hasler, Nov 30 2021
    
  • Sage
    [(2^(2*n+1) + 1)/3 for n in (0..25)] # G. C. Greubel, Dec 25 2019
    

Formula

a(n) = 2*A002450(n) + 1.
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = Sum_{m = 0..n} A060920(n, m) = A002450(n+1) - 2*A002450(n).
G.f.: (1-2*x)/(1-5*x+4*x^2). (End)
a(n) = Sum_{k = 0..n} binomial(n+k, 2*k)/2^(k - n).
a(n) = 4*a(n-1) - 1, n > 0.
From Paul Barry, Mar 17 2003: (Start)
a(n) = 1 + 2*Sum_{k = 0..n-1} 4^k;
a(n) = A001045(2n+1). (End)
a(n) = A020988(n-1) + 1 = A039301(n+1) - 1 = A083584(n-1) + 2. - Ralf Stephan, Jun 14 2003
a(0) = 1; a(n+1) = a(n) * 4 - 1. - Regis Decamps (decamps(AT)users.sf.net), Feb 04 2004 (correction to lead index by K. Spage, Aug 20 2014)
a(n) = Sum_{i + j + k = n; 0 <= i, j, k <= n} (n+k)!/i!/j!/(2*k)!. - Benoit Cloitre, Mar 25 2004
a(n) = 5*a(n-1) - 4*a(n-2). - Emeric Deutsch, Apr 01 2004
a(n) = 4^n - A001045(2*n). - Paul Barry, Apr 17 2004
a(n) = 2*(A001045(n))^2 + (A001045(n+1))^2. - Paul Barry, Jul 15 2004
a(n) = left and right terms in M^n * [1 1 1] where M = the 3X3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A002450(n+1) a(n)] E.g. a(3) = 43 since M^n * [1 1 1] = [43 85 43] = [a(3) A002450(4) a(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = A072197(n) - A020988(n). - Creighton Dement, Dec 31 2004
a(n) = A139250(2^n). - Omar E. Pol, Feb 28 2011
a(n) = A193652(2*n+1). - Reinhard Zumkeller, Aug 08 2011
a(n) = Sum_{k = -floor(n/3)..floor(n/3)} binomial(2*n, n+3*k)/2. - Mircea Merca, Jan 28 2012
a(n) = 2^(2*(n+1)) - A072197(n). - Vladimir Pletser, Apr 12 2014
a(n) == 2*n + 1 (mod 3). Indeed, from Regis Decamps' formula (Feb 04 2004) we have a(i+1) - a(i) == -1 (mod 3), i= 0, 1, ..., n - 1. Summing, we have a(n) - 1 == -n (mod 3), and the formula follows. - Vladimir Shevelev, May 20 2015
For n > 0 a(n) = A133494(0) + 2 * (A133494(n) + Sum_{x = 1..n - 1}Sum_{k = 0..x - 1}(binomial(x - 1, k)*(A133494(k+1) + A133494(n-x+k)))). - J. Conrad, Dec 06 2015
a(n) = Sum_{k = 0..2n} (-2)^k == 1 + Sum_{k = 1..n} 2^(2k-1). - Bob Selcoe, Aug 21 2016
E.g.f.: (1 + 2*exp(3*x))*exp(x)/3. - Ilya Gutkovskiy, Aug 21 2016
A075680(a(n)) = 1, for n > 0. - Ralf Stephan, Jun 17 2025

A075677 Reduced Collatz function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 5, 1, 11, 7, 17, 5, 23, 13, 29, 1, 35, 19, 41, 11, 47, 25, 53, 7, 59, 31, 65, 17, 71, 37, 77, 5, 83, 43, 89, 23, 95, 49, 101, 13, 107, 55, 113, 29, 119, 61, 125, 1, 131, 67, 137, 35, 143, 73, 149, 19, 155, 79, 161, 41, 167, 85, 173, 11, 179, 91, 185, 47, 191, 97, 197
Offset: 1

Views

Author

T. D. Noe, Sep 25 2002

Keywords

Comments

The even-indexed terms a(2i+2) = 6i+5 = A016969(i), i >= 0 [Comment corrected by Bob Selcoe, Apr 06 2015]. The odd-indexed terms are the same as A067745. Note that this sequence is A016789 with all factors of 2 removed from each term. Also note that a(4i-1) = a(i). No multiple of 3 is in this sequence. See A075680 for the number of iterations of R required to yield 1.
From Bob Selcoe, Apr 06 2015: (Start)
All numbers in this sequence appear infinitely often.
From Eq. 1 and Eq. 2 in Formulas: Eq. 1 is used with 1/3 of the numbers in this sequence, Eq. 2 is used with 2/3 of the numbers.
(End)
Empirical: For arbitrary m, Sum_{n=2..A007583(m)} (a(n) - a(n-1)) = 0. - Fred Daniel Kline, Nov 23 2015
From Wolfdieter Lang, Dec 07 2021: (Start)
Only positive numbers congruent to 1 or 5 modulo 6 appear.
i) For the sequence entry with value A016921(m), for m >= 0, that is, a value from {1, 7, 13, ...}, the indices n are given by the row of array A178415(2*m+1, k), for k >= 1.
ii) For the sequence entry with value A007528(m), for m >= 1, that is, a value from {5, 11, 17, ...}, the indices n are given by the row of array A178415(2*m, k), for k >= 1.
See also the array A347834 with permuted row numbers and columns k >= 0. (End)

Examples

			a(11) = 1 because 21 is the 11th odd number and R(21) = 64/64 = 1.
From _Wolfdieter Lang_, Dec 07 2021: (Start)
i) 1 (mod 6) entry 1 = A016921(0) appears for n = A178415(1, k) = A347834(1, k-1) (the arrays), for k >= 1, that is, for {1, 5, 21, ..} = A002450.
ii) 5 (mod 6) entry 11 = A007528(2) appears for n = A178415(4, k) = A347835(3, k-1) (the arrays), for k >= 1, that is, for {7, 29, 117, ..} = A072261. (End)
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E16, pp. 330-336.
  • Victor Klee and Stan Wagon, Old and new unsolved problems in plane geometry and number theory, The Mathematical Association of America, 1991, p. 225, C(2n+1) = a(n+1), n >= 0.
  • Jeffrey C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see p. 57, also (90-9), p. 306.

Crossrefs

Cf. A006370, A014682 (for non-reduced Collatz maps), A087230 (A371093), A371094.
Odd bisection of A139391.
Even bisection of A067745, which is also the odd bisection of this sequence.
After the initial 1, the second leftmost column of A256598.
Row 2 of A372283.

Programs

  • Haskell
    a075677 = a000265 . subtract 2 . (* 6) -- Reinhard Zumkeller, Jan 08 2014
    
  • Maple
    f:=proc(n) local t1;
    if n=1 then RETURN(1) else
    t1:=3*n+1;
    while t1 mod 2 = 0 do t1:=t1/2; od;
    RETURN(t1); fi;
    end;
    # N. J. A. Sloane, Jan 21 2011
  • Mathematica
    nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
    v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; Table[f[2*n - 1], {n, 66}] (* L. Edson Jeffery, May 06 2015 *)
  • PARI
    a(n)=n+=2*n-1;n>>valuation(n,2) \\ Charles R Greathouse IV, Jul 05 2013
    
  • Python
    from sympy import divisors
    def a(n):
        return max(d for d in divisors(n) if d % 2)
    print([a(6*n - 2) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017, after formula by Reinhard Zumkeller

Formula

a(n) = A000265(6*n-2) = A000265(3*n-1). - Reinhard Zumkeller, Jan 08 2014
From Bob Selcoe, Apr 05 2015: (Start)
For all n>=1 and for every k, there exists j>=0 dependent upon n and k such that either:
Eq. 1: a(n) = (3n-1)/2^(2j+1) when k = ((4^(j+1)-1)/3) mod 2^(2j+3). Alternatively: a(n) = A016789(n-1)/A081294(j+1) when k = A002450(j+1) mod A081294(j+2). Example: n=51; k=101 == 5 mod 32, j=1. a(51) = 152/8 = 19.
or
Eq. 2: a(n) = (3n-1)/4^j when k = (5*2^(2j+1) - 1)/3 mod 4^(j+1). Alternatively: a(n) = A016789(n-1)/A000302(j) when k = A072197(j) mod A000302(j+1). Example: n=91; k=181 == 53 mod 64, j=2. a(91) = 272/16 = 17.
(End) [Definition corrected by William S. Hilton, Jul 29 2017]
a(n) = a(n + g*2^r) - 6*g, n > -g*2^r. Examples: n=59; a(59)=11, r=5. g=-1: 11 = a(27) = 5 - (-1)*6; g=1: 11 = a(91) = 17 - 1*6; g=2: 11 = a(123) = 23 - 2*6; g=3: 11 = a(155) = 29 - 3*6; etc. - Bob Selcoe, Apr 06 2015
a(n) = a((1 + (3*n - 1)*4^(k-1))/3), k>=1 (cf. A191669). - L. Edson Jeffery, Oct 05 2015
a(n) = a(4n-1). - Bob Selcoe, Aug 03 2017
a(n) = A139391(2n-1). - Antti Karttunen, May 06 2024
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 26 2024
G.f.: Sum_{k>=1} ((3 + 2*(-1)^k)*x^(3*2^(k - 1) - (-2)^k/3 + 1/3) + (3 - 2*(-1)^k)*x^(2^(k - 1) - (-2)^k/3 + 1/3))/(x^(2^k) - 1)^2. - Miles Wilson, Oct 26 2024

A086893 a(n) is the index of F(n+1) at the unique occurrence of the ordered pair of reversed consecutive terms (F(n+1),F(n)) in Stern's diatomic sequence A002487, where F(k) denotes the k-th term of the Fibonacci sequence A000045.

Original entry on oeis.org

1, 3, 5, 13, 21, 53, 85, 213, 341, 853, 1365, 3413, 5461, 13653, 21845, 54613, 87381, 218453, 349525, 873813, 1398101, 3495253, 5592405, 13981013, 22369621, 55924053, 89478485, 223696213, 357913941, 894784853, 1431655765, 3579139413
Offset: 1

Views

Author

John W. Layman, Sep 18 2003

Keywords

Comments

If the Fibonacci pairs are kept in the natural order (F(n),F(n+1)), it appears that the first term of the pair occurs in A002487 at the index given by A061547(n).
Equals row sums of triangle A177954. - Gary W. Adamson, May 15 2010
Starting at n=3, begin subtracting from (2^(n-1)-1)/2^(n-1): 3/4 - 1/2 = 1/4 with 1+4=5=a(3); 7/8 - 1/4 = 5/8 with 5+8=13=a(4); 15/16 - 5/8 = 5/16 with 5+16=21= a(5); 31/32 - 5/16 = 21/32 with 21+32=53=a(6); 63/64 - 21/32 = 21/64 with 21+64=85=a(7) and so on. For n odd in the first fraction (2^(n-1)-1)/2^(n-1), the result approaches 1/3, and for n even in the first fraction, the result approaches 2/3. - J. M. Bergot, May 08 2015
Also, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283641. - Robert Price, Mar 12 2017

Examples

			A002487 begins 0,1,1,2,1,3,2,... with offset 0. Thus a(1)=1 since (F(2),F(1)) = (1,1) occurs at term 1 of A002487. Similarly, a(2)=3 and a(3)=5, since (F(3),F(2))=(2,1) occurs at term 3 and (F(4),F(3))=(3,2) at term 5 of A002487.
		

Crossrefs

Interleaving of A002450\{0} and A072197.
Positive terms of A096773 in ascending order.
Partial sums of A158302.

Programs

  • Magma
    [2^(n-1)*(3-(-1)^n/3)-1/3: n in [0..35]]; // Vincenzo Librandi, May 09 2015
    
  • Mathematica
    f[n_] := Module[{a = 1, b = 0, m = n}, While[m > 0, If[OddQ@ m, b = a + b, a = a + b]; m = Floor[m/2]]; b]; a = Table[f[n], {n, 0, 10^6}]; b = Reverse /@ Partition[Map[Fibonacci, Range[Ceiling@ Log[GoldenRatio, Max@ a] + 1]], 2, 1]; Map[If[Length@ # > 0, #[[1, 1]] - 1, 0] &@ SequencePosition[a, #] &, b] (* Michael De Vlieger, Mar 15 2017, Version 10.1, after Jean-François Alcover at A002487 *)
  • PARI
    a(n)=if(n%2,2^(n+1),2^(n+1)+2^(n-1))\3 \\ Charles R Greathouse IV, May 08 2015
    
  • Python
    def A086893(n): return (1<Chai Wah Wu, Apr 29 2024

Formula

It appears that a(n)=(4^((n+1)/2)-1)/3 if n is odd and a(n)=(a(n-1)+a(n+1))/2 if n is even.
G.f.: (1+2*x-2*x^2)/((1-x)*(1-4*x^2)); a(n) = 2^(n-1)(3-(-1)^n/3)-1/3 (offset 0); a(n) = Sum{k=0..n+1, 4^floor(k/2)/2} (offset 0); a(2n) = A002450(n+1) (offset 0); a(2n+1) = A072197(n) (offset 0). - Paul Barry, May 21 2004
a(n+2) = 4*a(n) + 1, a(1) = 1, a(2) = 3, n > 0. - Yosu Yurramendi, Mar 07 2017
a(n+1) = a(n) + A158302(n), a(1) = 1, n > 0. - Yosu Yurramendi, Mar 07 2017

Extensions

More terms from Paul Barry, May 21 2004

A347834 An array A of the positive odd numbers, read by antidiagonals upwards, giving the present triangle T.

Original entry on oeis.org

1, 3, 5, 7, 13, 21, 9, 29, 53, 85, 11, 37, 117, 213, 341, 15, 45, 149, 469, 853, 1365, 17, 61, 181, 597, 1877, 3413, 5461, 19, 69, 245, 725, 2389, 7509, 13653, 21845, 23, 77, 277, 981, 2901, 9557, 30037, 54613, 87381, 25, 93, 309, 1109, 3925, 11605, 38229, 120149, 218453, 349525
Offset: 1

Views

Author

Wolfdieter Lang, Sep 20 2021

Keywords

Comments

For the definition of this array A see the formula section.
The rows of A appear in a draft by Immmo O. Kerner in eqs. (1) and (2) as so-called horizontal sequences (horizontale Folgen). Thanks to Dr. A. Eckert for sending me this paper.
This array with entry A(k, n) becomes equal to the array T with T(n, k) given in A178415 by using a permutation of the rows, and changing the offset: A(k, n) = T(pe(k), n+1), with pe(3*(L+1)) = 4*(L+1), pe(1+3*L) = 1 + 2*L, pe(2+3*L) = 2*(1 + 2*L), for L >= 0. This permutation appears in A265667.
A proper sub-array is A238475(n, k) = A(1 + 3*(k-1), n-1), for k >= 1 and n >= 1.
In the directed Collatz tree with nodes labeled with only positive odd numbers (see A256598 for the paths), here called CTodd, the level L = 0 (on the top) has the node with label 1 as root. Because 1 -> 1 there is an arrow (a 1-cycle or loop) at the root. The level L = 1 consists of the nodes with labels A(1, n), for n >= 1, and each node is connected to 1 by a downwards directed arrow. The next levels for L >= 2 are obtained using the successor rule (used also by Kerner): S(u) = (4*u - 1)/3 if u == 1 (mod 3), (2*u - 1)/3 if u == 5 (mod 3), and there is no successor S(u) = empty if u = 3 (mod 6), that is, this node is a leaf.
However, each node with label u on level L >= 1, except a leaf, has as successors at level L + 1 not only the node with S(u) but all the nodes with labels A(S(u), n), for n >= 0.
In this way each node (also the root) of this CTodd has in-degree 1 and infinite out-degree (for L >= 2 there are infinitely many infinite outgoing arrows). All nodes with label A(k, n) with n >= 1, have the same precursor as the node A(k,0) in this tree for each k >= 1.
Except for the loop (1-cycle) for the root 1 there are no cycles in this directed tree CTodd.
That each number N = 5 + 8*K, for K >= 0 appears in array A for some column n >= 1 uniquely can be proved, using the fact of strictly increasing rows and columns, by showing that the columns n = 1, 2, ..., c contain all positive integers congruent to 5 modulo 8 except those of the positive congruence class A(1, c+1) modulo 2^(2*c+3) by induction on c. [added Dec 05 2021]
Row index k for numbers congruent to 5 modulo 8: Each number N = 5 + 8*K, for K >= 0, from A004770 is a member of row k of the array A starting with element A(k, 0) = (2*A065883(2 + 3*N) - 1)/3. For this surjective map see A347840. [simplified Dec 05 2021]
The Collatz conjecture can be reduced to the conjecture that in this rooted and directed tree CTodd each positive odd number appears as a label once, that is, all entries of the array A appear.

Examples

			The array A(k, n) begins:
k\n  0   1   2    3    4     5      6      7       8       9       10 ...
-------------------------------------------------------------------------
1:   1   5  21   85  341  1365   5461  21845   87381  349525  1398101
2:   3  13  53  213  853  3413  13653  54613  218453  873813  3495253
3:   7  29 117  469 1877  7509  30037 120149  480597 1922389  7689557
4:   9  37 149  597 2389  9557  38229 152917  611669 2446677  9786709
5:  11  45 181  725 2901 11605  46421 185685  742741 2970965 11883861
6:  15  61 245  981 3925 15701  62805 251221 1004885 4019541 16078165
7:  17  69 277 1109 4437 17749  70997 283989 1135957 4543829 18175317
8:  19  77 309 1237 4949 19797  79189 316757 1267029 5068117 20272469
9:  23  93 373 1493 5973 23893  95573 382293 1529173 6116693 24466773
10: 25 101 405 1621 6485 25941 103765 415061 1660245 6640981 26563925
...
--------------------------------------------------------------------
The triangle T(k, n) begins:
k\n  0  1   2    3    4     5     6      7      8      9 ...
------------------------------------------------------------
1:   1
2:   3  5
3:   7 13  21
4:   9 29  53   85
5:  11 37 117  213  341
6:  15 45 149  469 853   1365
7:  17 61 181  597 1877  3413  5461
8:  19 69 245  725 2389  7509 13653  21845
9:  23 77 277  981 2901  9557 30037  54613  87381
10: 25 93 309 1109 3925 11605 38229 120149 218453 349525
...
-------------------------------------------------------------
Row index k of array A, for entries 5 (mod 8).
213 = 5 + 8*26. K = 28 is even, (3*231+1)/16 = 40, A065883(40) = 10, hence A(k, 0) = N' = (10-1)/3 = 3, and k = 2. Moreover, n = log_4((3*213 + 1)/(3*A(2,0) + 1)) = log_4(64) = 3. 213 = A(2, 3).
85 = 5 + 8*10. K = 10 is even, (3*85 + 1)/16 = 16, A065883(16) = 1, N' = (1-1)/3 = 0 is even, hence A(k, 0) = 4*0 + 1 = 1, k = 1. 85 = A(1, 3).
61 = 5 + 8*7, K = 7 is odd, k = (7+1)/2 + ceiling((7+1)/4) = 6, and n = log_4((3*61 + 1)/(3*A(6,0) + 1)) = 1. 61 = A(6, 1).
----------------------------------------------------------------------------
		

Crossrefs

Row sequences of the array A, also diagonal sequences of the triangle T: -A007583 (k=0), A002450(n+1), A072197, A072261(n+1), A206374(n+1), A072262(n+1), A072262(n+1), A072201(n+1), A330246(n+1), ...
Column sequences of the array A, also of the triangle T (shifted): A047529, A347836, A347837, ...

Programs

  • Maple
    # Seen as an array:
    A := (n, k) -> ((3*(n + floor(n/3)) - 1)*4^(k+1) - 2)/6:
    for n from 1 to 6 do seq(A(n, k), k = 0..9) od;
    # Seen as a triangle:
    T := (n, k) -> 2^(2*k + 1)*(floor((n - k)/3) - k + n - 1/3) - 1/3:
    for n from 1 to 9 do seq(T(n, k), k = 0..n-1) od;
    # Using row expansion:
    gf_row := k -> (1 / (x - 1) - A047395(k)) / (4*x - 1):
    for k from 1 to 10 do seq(coeff(series(gf_row(k), x, 11), x, n), n = 0..10) od;
    # Peter Luschny, Oct 09 2021
  • Mathematica
    A347834[k_, n_] := (4^n*(6*(Floor[k/3] + k) - 2) - 1)/3;
    Table[A347834[k - n, n], {k, 10}, {n, 0, k - 1}] (* Paolo Xausa, Jun 26 2025 *)

Formula

Array A:
A(k, 0) = A047529(k) (the positive odd numbers {1, 3, 7} (mod 8));
A(k, n) = ((3* A(k, 0) + 1)*4^n - 1)/3, for k >= 1 and n >= 0.
Recurrence for rows k >= 1: A(k, n) = 4*A(k, n-1) + 1, for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k).
Explicit form: A(k, n) = ((3*(k + floor(k/3)) - 1)*4^(n+1) - 2)/6, k >= 1, n >= 0. Here 3*(k + floor(k/3)) = A319451(k).
Hence A(k, n) = 5 + 8*(2*A(k, n-2)), for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k), and 2*A(k, -1) = (A(k, 1) - 5)/8 = k - 1 + floor(k/3) (equals index n of A(k, 1) in the sequence (A004770(n+1))_{n >= 0}). A(k, -1) is half-integer if k = A007494(m) = m + ceiling(m/2), for m >= 1, and A(k, -1) = 2*K if k = 1 + 3*K = A016777(K), for K >= 0.
O.g.f.: expansion in z gives o.g.f.s for rows k, also for k = 0: -A007583; expansion in x gives o.g.f.s for columns n.
G(z, x) = (2*(-1 + 3*z + 3*z^2 + 7*z^3)*(1-x) - (1-4*x)*(1-z^3)) / (3*(1-x)*(1-4*x)*(1-z)*(1-z^3)).
Triangle T:
T(k, n) = A(k - n, n), for k >= 1 and n = 0..k-1.
A(k, n) = [x^n] (1/(x - 1) - A047395(k)) / (4*x - 1). - Peter Luschny, Oct 09 2021

A081254 Numbers k such that A081252(m)/m^2 has a local maximum for m = k.

Original entry on oeis.org

1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1706, 3413, 6826, 13653, 27306, 54613, 109226, 218453, 436906, 873813, 1747626, 3495253, 6990506, 13981013, 27962026, 55924053, 111848106, 223696213, 447392426, 894784853, 1789569706, 3579139413
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local maxima, lim_{m->inf} A081252(m)/m^2 = 1/10. For local minima cf. A081253.
Row sums of the triangle A181971. - Reinhard Zumkeller, Jul 09 2012

Examples

			13 is a term since A081252(12)/12^2 = 15/144 = 0.104..., A081252(13)/13^2 = 18/169 = 0.106..., A081252(14)/14^2 = 20/196 = 0.102....
		

Crossrefs

Programs

  • Magma
    [Floor(2^(n-1)*5/3): n in [1..40]]; // Vincenzo Librandi, Apr 04 2012
    
  • Maple
    seq(floor(2^(n-1)*5/3),n=1..35); # Muniru A Asiru, Sep 20 2018
  • Mathematica
    Rest@CoefficientList[Series[-(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)), {x, 0, 32}], x] (* Vincenzo Librandi, Apr 04 2012 *)
    a[n_]:=Floor[2^(n-1)*5/3]; Array[a,33,1] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = 2^(n-1)*5\3; \\ Altug Alkan, Sep 21 2018

Formula

a(n) = floor(2^(n-1)*5/3). [corrected by Michel Marcus, Sep 21 2018]
a(n) = a(n-2) + 5*2^(n-3) for n > 2;
a(n+2) - a(n) = A020714(n-1);
a(n) + a(n-1) = A052549(n-1) for n > 1;
a(2*n+1) = A020989(n); a(2n) = A072197(n-1);
a(n+1) - a(n) = A048573(n-1).
G.f.: -(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 5*2^(n-1)/3 + (-1)^n/6-1/2. a(n) = 2*a(n-1) + (1+(-1)^n)/2, a(1)=1. - Paul Barry, Mar 24 2003
a(2n) = 2*a(2*n-1) + 1, a(2*n+1) = 2*a(2*n), a(1)=1. a(n) = A000975(n-1) + 2^(n-1). - Philippe Deléham, Oct 15 2006
a(n) = A005578(n) + A000225(n-1). - Yuchun Ji, Sep 21 2018
a(n) - a(n-2) = 2 * (a(n-1) - a(n-3)), with a(0..2)=[1,3,6]. - Yuchun Ji, Mar 18 2020

A178415 Array T(n,k) of odd Collatz preimages read by antidiagonals.

Original entry on oeis.org

1, 3, 5, 9, 13, 21, 7, 37, 53, 85, 17, 29, 149, 213, 341, 11, 69, 117, 597, 853, 1365, 25, 45, 277, 469, 2389, 3413, 5461, 15, 101, 181, 1109, 1877, 9557, 13653, 21845, 33, 61, 405, 725, 4437, 7509, 38229, 54613, 87381, 19, 133, 245, 1621, 2901, 17749, 30037
Offset: 1

Views

Author

T. D. Noe, May 28 2010

Keywords

Comments

Every odd number occurs uniquely in this array. See A178414.

Examples

			Array T begins:
.    1    5   21    85   341   1365    5461   21845    87381   349525
.    3   13   53   213   853   3413   13653   54613   218453   873813
.    9   37  149   597  2389   9557   38229  152917   611669  2446677
.    7   29  117   469  1877   7509   30037  120149   480597  1922389
.   17   69  277  1109  4437  17749   70997  283989  1135957  4543829
.   11   45  181   725  2901  11605   46421  185685   742741  2970965
.   25  101  405  1621  6485  25941  103765  415061  1660245  6640981
.   15   61  245   981  3925  15701   62805  251221  1004885  4019541
.   33  133  533  2133  8533  34133  136533  546133  2184533  8738133
.   19   77  309  1237  4949  19797   79189  316757  1267029  5068117
- _L. Edson Jeffery_, Mar 11 2015
From _Bob Selcoe_, Apr 09 2015 (Start):
n=5, j=13: T(5,3) = 277 = (13*4^3 - 1)/3;
n=6, j=17: T(6,4) = 725 = (17*2^7 - 1)/3.
(End)
		

Crossrefs

Rows of array: -A007583(k-1) (n=0), A002450 (n=1), A072197(k-1) (n=2), A206374(n=3), A072261 (n=4), A323824 (n=5), A072262 (n=6), A330246 (n=7), A072201 (n=8), ...
Columns of array: A022998(n-1)/2 (k=0), A178414 (k=1), ...
Cf. A347834 (permuted rows of the array).

Programs

  • Mathematica
    t[n_,1] := t[n,1] = If[OddQ[n],4n-3,2n-1]; t[n_,k_] := t[n,k] = 4*t[n,k-1]+1; Flatten[Table[t[n-i+1,i], {n,20}, {i,n}]]

Formula

From Bob Selcoe, Apr 09 2015 (Start):
T(n,k) = 4*T(n,k-1) + 1.
T(n,k) = T(1,k) + 2^(2k+1)*(n-1)/2 when n is odd;
T(n,k) = T(2,k) + 4^k*(n-2)/2 when n >= 2 and n is even. So equivalently:
T(n,k) = T(n-2,k) + 2^(2k+1) when n is odd; and
T(n,k) = T(n-2,k) + 4^k when n is even.
Let j be the n-th positive odd number coprime with 3. Then:
T(n,k) = (j*4^k - 1)/3 when j == 1 (mod 3); and
T(n,k) = (j*2^(2k-1) - 1)/3 when j == 2 (mod 3).
(End)
From Wolfdieter Lang, Sep 18 2021: (Start)
T(n, k) = ((3*n - 1)*4^k - 2)/6 if n is even, and ((3*n - 2)*4^k - 1)/3 if n is odd, for n >= 1 and k >= 1. Also for n = 0: -A007583(k-1), with A007583(-1) = 1/2, and for k = 0: A022998(n-1)/2, with A022998(-1) = -1.
O.g.f. for array T (with row n = 0 and column k = 0; z for rows and x for columns): G(z, x) = (1/(2*(1-x)*(1-4*x)*(1-z^2)^2)) * ((2*x-4)*z^3 + (3-5*x)*z^2 + 2*x*z + 3*x - 1). (End)

A096773 a(n) = 4*a(n-2) + 1 with a(1) = 0, a(2) = 3.

Original entry on oeis.org

0, 3, 1, 13, 5, 53, 21, 213, 85, 853, 341, 3413, 1365, 13653, 5461, 54613, 21845, 218453, 87381, 873813, 349525, 3495253, 1398101, 13981013, 5592405, 55924053, 22369621, 223696213, 89478485, 894784853, 357913941, 3579139413, 1431655765
Offset: 1

Views

Author

Gottfried Helms, Aug 15 2004

Keywords

Comments

Remainders for classes m of integers n (mod 2^(m+1)). After applying one Collatz (3x+1)-transformation to the so-classified integers the result can be written in two classes (mod 6) only.
This classifying scheme covers all positive integers.
With one 3x+1-transformation T(x;p) := x' = (3x+1)/2^p, all numbers x, described in the form, with the free parameter i >= 0, x = i*2^N + a(N) result in x', describable by the two classes with the same parameter i:
x' = i*6 + 1 (for odd N>2), or x' = i*6 + 5 (for even N). Thus
x = 4*i + 3 -> x' = 6*i + 5, x = 8*i + 1 -> x' = 6*i + 1,
x = 16*i + 13 -> x' = 6*i + 5, x = 32*i + 5 -> x' = 6*i + 1,
x = 64*i + 53 -> x' = 6*i + 5, x = 128*i + 21 -> x' = 6*i + 1,
....
all with "i" as a free parameter >= 0 covering all positive integers.

Examples

			a(1) = (2^0-1)/3 =  0, a(2) = (5*2^1 - 1) / 3 =  3,
a(3) = (2^2-1)/3 =  1, a(4) = (5*2^3 - 1) / 3 = 13,
a(5) = (2^4-1)/3 =  5, a(6) = (5*2^5 - 1) / 3 = 53,
a(7) = (2^6-1)/3 = 21.
....
		

Crossrefs

Bisections are A002450 & A072197.
After the initial 0, column 1 of A257852.
Cf. A176965.

Programs

  • Magma
    [(2^(n-1)*(3 + 2*(-1)^n) - 1)/3: n in [1..40]]; // Vincenzo Librandi, Jul 12 2015
    
  • Mathematica
    a[1] = 0; a[2] = 3; a[n_] := a[n] = 4a[n - 2] + 1; Table[ a[n], {n, 35}] (* Robert G. Wilson v, Aug 20 2004 *)
    Table[(2^(n - 1)*(3 + 2*(-1)^(n)) - 1)/3, {n, 10}] (* L. Edson Jeffery, Jul 12 2015 *)
    nxt[{a_,b_}]:={b,4a+1}; NestList[nxt,{0,3},40][[;;,1]] (* or *) LinearRecurrence[{1,4,-4},{0,3,1},40] (* Harvey P. Dale, Mar 19 2025 *)
  • PARI
    apply( {A096773(n) = if(n%2, 1, 5)<<(n-1)\3}, [1..55]) \\ M. F. Hasler, May 28 2024
    
  • Perl
    # To map any (odd) v to its (r,c):
    use bigint; $v=149; $r=$c=0; while(1){ $b=($v&1); $v>>=1; if ($b==($v&1)){ $c=($v>>1); last} $r++} $r&=1; # this splits the binary representation into two parts, at the first repeated digit from the right: the number of bits on the right is the row value, and the binary value on the left is the column value. Example: 149 => 1.00.10101 => (r,c)=(5,1). Ruud H.G. van Tol, Sep 23 2021
    
  • Python
    A096773=lambda n:((1 if n&1 else 5)<M. F. Hasler, May 28 2024

Formula

a(2m) = (5*2^(2m-1) - 1)/3, a(2m-1) = (2^(2m-2)-1)/3.
From Paul Curtz, Jul 01 2008; corrected by Bob Selcoe, Jul 28 2018: (Start)
a(2n) = 10*a(2n-1) + 3.
a(n+1) - 2*a(n) = A001045(n+2), signed. (End)
a(n) = (2^(n-1)*(3 + 2*(-1)^n) - 1)/3. - L. Edson Jeffery, Jul 12 2015
a(2n) = A086893(2n), a(2n+1) = A086893(2n-1), n > 0. - Yosu Yurramendi, Jan 17 2017
G.f.: -x^2*(-3+2*x) / ( (x-1)*(2*x+1)*(2*x-1) ). - R. J. Mathar, Mar 07 2017
a(2n) = A072197(n-1), n > 0; a(2n+1) = A002450(n), n >= 0. - Yosu Yurramendi, Mar 07 2017
a(2n) = (A266753(n) + A004171(n-1))/2, a(2n+1) = (A266753(n) - A004171(n-1))/2, n > 0. - Yosu Yurramendi, Mar 07 2017
a(n) = least residue 2*3^(2^(n-4)-1) - 1 (mod 2^n), n >= 5. - Bob Selcoe, Jul 26 2018
a(n) = 2*A176965(n-1) + 1 for n > 1. - Loren M. Pearson, Dec 06 2024

A162911 Numerators of drib tree fractions, where drib is the bit-reversal permutation tree of the Bird tree.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 3, 3, 5, 1, 4, 3, 4, 2, 5, 5, 8, 2, 7, 4, 5, 3, 7, 4, 7, 1, 5, 5, 7, 3, 8, 8, 13, 3, 11, 7, 9, 5, 12, 5, 9, 1, 6, 7, 10, 4, 11, 7, 11, 3, 10, 5, 6, 4, 9, 7, 12, 2, 9, 8, 11, 5, 13, 13, 21, 5, 18, 11, 14, 8, 19, 9, 16, 2, 11, 12, 17, 7, 19, 9, 14, 4, 13, 6, 7, 5, 11, 10, 17, 3, 13
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The drib tree is an infinite binary tree labeled with rational numbers. It is generated by the following iterative process: start with the rational 1; for the left subtree increment and then reciprocalize the current rational; for the right subtree interchange the order of the two steps: the rational is first reciprocalized and then incremented. Like the Stern-Brocot and the Bird tree, the drib tree enumerates all the positive rationals (A162911(n)/A162912(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1, 2,
2, 3,1, 3,
3, 5,1, 4, 3, 4,2, 5,
5, 8,2, 7, 4, 5,3, 7,4, 7,1, 5, 5, 7,3, 8,
...
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci-type sequence.
If the rows are written in a right-aligned fashion:
1
1, 2
2, 3,1, 3
3, 5,1, 4, 3, 4,2, 5
5, 8,2, 7,4, 5,3, 7, 4, 7,1, 5, 5, 7,3, 8
...
then each column k also is a Fibonacci-type sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162912 (a(2^m+k) = A162912(2^(m+1)-1-k), m = 0,1,2,..., k = 0..2^m-1).
(End)
From Yosu Yurramendi, Jan 12 2017: (Start)
a(2^(m+2m' ) + A020988(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) + A020989(m')) = A000045(m+3), m>=0, m'>=0
a(2^(m+2m' ) - 1 - A002450(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) - 1 - A072197(m'-1)) = A000045(m+3), m>=0, m'>0
a(2^(m+1) -1) = A000045(m+2), m>=0. (End)

Examples

			The first four levels of the drib tree:
  [1/1],
  [1/2, 2/1],
  [2/3, 3/1, 1/3, 3/2],
  [3/5, 5/2, 1/4, 4/3, 3/4, 4/1, 2/5, 5/3].
		

Crossrefs

This sequence is the composition of A162909 and A059893: a(n) = A162909(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio; drib :: [Rational]; drib = 1 : map (recip . succ) drib \/ map (succ . recip) drib; (a : as) \/ bs = a : (bs \/ as); a162911 = map numerator drib; a162912 = map denominator drib
    
  • PARI
    a(n) = my(x = 0, y = 1); forstep(i = logint(n, 2), 0, -1, [x, y] = if(bittest(n, i), [y, x + y], [x + y, x])); y \\ Mikhail Kurkov, Oct 12 2023
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k  ] <- a[2^(m+1)-1-k]
      a[2^(m+1)+2*k+1] <- a[2^(m+1)-1-k] + a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014
    

Formula

a(n) where a(1) = 1; a(2n) = b(n); a(2n+1) = a(n) + b(n); and b(1) = 1; b(2n) = a(n) + b(n); b(2n+1) = a(n).
a(2^(m+1)+2*k) = a(2^(m+1)-k-1), a(2^(m+1)+2*k+1) = a(2^(m+1)-k-1) + a(2^m+k), a(1) = 1, m>=0, k=0..2^m-1. - Yosu Yurramendi, Jul 11 2014
a(2^(m+1) + 2*k) = A162912(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^(m+1) + 2*k + 1) = a(2^m + k) + A162912(2^m + k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 30 2016
a(n*2^m + A176965(m)) = A268087(n), n > 0, m > 0. - Yosu Yurramendi, Feb 20 2017
a(n) = A002487(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A072261 a(n) = 4*a(n-1) + 1, a(1)=7.

Original entry on oeis.org

7, 29, 117, 469, 1877, 7509, 30037, 120149, 480597, 1922389, 7689557, 30758229, 123032917, 492131669, 1968526677, 7874106709, 31496426837, 125985707349, 503942829397, 2015771317589, 8063085270357, 32252341081429, 129009364325717, 516037457302869
Offset: 1

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002

Keywords

Comments

These are the integers N which on application of the Collatz function yield the number 11. The Collatz function: if N is an odd number then (3N+1)/2^r yields a positive odd integer for some value of r (which in this case is 11).
These numbers reach 11 in Collatz function iteration after 2(n+1) steps and so end in 1 after exactly 2n+18 steps. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 08 2004
Numbers whose binary representation is 111 together with n - 1 times 01. For example, a(4) = 469 = 111010101 (2). - Omar E. Pol, Nov 24 2012

Crossrefs

Programs

  • GAP
    List([1..25], n-> (11*4^n -2)/6); # G. C. Greubel, Jan 14 2020
  • Magma
    [(11*4^n -2)/6: n in [1..25]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq(coeff(series(x*(7-6*x)/((1-x)*(1-4*x)), x, n+1), x, n), n = 1..25); # G. C. Greubel, Jan 14 2020
  • Mathematica
    a[n_]:= 4a[n-1] +1; a[1]=7; Table[a[n], {n,25}]
    NestList[4#+1&,7,30] (* or *) LinearRecurrence[{5,-4},{7,29},30] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    Vec(x*(7-6*x)/((1-x)*(1-4*x)) + O(x^25)) \\ Colin Barker, Oct 27 2019
    
  • Sage
    [(11*4^n -2)/6 for n in (1..25)] # G. C. Greubel, Jan 14 2020
    

Formula

a(n) = (11*4^n - 2)/6 = 22*A002450(n-1) + 7. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 08 2004
From Colin Barker, Oct 27 2019: (Start)
G.f.: x*(7 - 6*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n>2. (End)
E.g.f.: (-9 - 2*exp(x) + 11*exp(4*x))/6. - G. C. Greubel, Jan 14 2020
a(n) = a(n-1) + 11*2^(2*n-3), for n >= 2, with a(1) = 7. - Wolfdieter Lang, Aug 16 2021
a(n) = A178415(4, n) = A347834(3, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

Extensions

Edited and extended by Robert G. Wilson v, Jul 17 2002
More terms from Colin Barker, Oct 27 2019

A087445 Numbers that are congruent to 1 or 5 mod 12.

Original entry on oeis.org

1, 5, 13, 17, 25, 29, 37, 41, 49, 53, 61, 65, 73, 77, 85, 89, 97, 101, 109, 113, 121, 125, 133, 137, 145, 149, 157, 161, 169, 173, 181, 185, 193, 197, 205, 209, 217, 221, 229, 233, 241, 245, 253, 257, 265, 269, 277, 281, 289, 293, 301, 305, 313, 317, 325, 329
Offset: 1

Views

Author

Paul Barry, Sep 04 2003

Keywords

Comments

From Bob Selcoe, Jun 03 2015: (Start)
For k >= 1: all numbers congruent to A002450(k) mod 2^(2k+1) and A072197(k) mod 4^(k+1) not congruent to 0 mod 3. Equivalently, for k >= 3: all numbers congruent to A096773(k) mod 2^k not congruent to 0 mod 3.
Conjecture: at least one number in this sequence must appear in all Collatz sequences.
(End)
The sequence is composed of all numbers in congruence classes T(n,1) mod 2^(n+k) in A259663 (i.e., T"(1) in array T259663(n,k)) not congruent to 0 mod 3. Therefore the conjecture above is true (see A259663 for additional explanation). - Bob Selcoe, Jul 15 2017
Closure of {1} under the map (x,y)->2x+3y [Klarner-Rado, see Lagarias (2016), p. 755]. - N. J. A. Sloane, Oct 06 2016
The above conjecture is true: this is because even numbers and odd numbers divisible by 3 will lead to the set of odd numbers not divisible by 3. Odd numbers of the form 4k - 1 can also be ignored, as this consists of odd numbers that grow between themselves and the next odd term through Collatz iteration. No infinite sequence of growth between consecutive odd terms is possible, so all numbers of the form 4k - 1 will lead to an odd number that shrinks between itself and the next odd number. All numbers 4k - 1 will lead to a number in 4k - 3, the odd numbers that shrink between themselves and the following odd term. What we are left after that elimination is this sequence. - Aidan Simmons, Feb 25 2019

Crossrefs

Programs

  • Magma
    [k:k in [1..330]| k mod 12 in [1,5]]; // Marius A. Burtea, Feb 08 2020
  • Maple
    seq(6*(n-1)-(-1)^n,n=1..100); # Robert Israel, Jun 10 2015
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,5,13},70] (* or *) Rest[CoefficientList[ Series[x (1+4x+7x^2)/((1+x)(1-x)^2),{x,0,70}],x]]  (* Harvey P. Dale, Jun 13 2011 *)
  • PARI
    a(n)=(n-1)\2*12 + [5,1][n%2+1] \\ Charles R Greathouse IV, Jun 03 2015
    

Formula

G.f.: x*(1+4*x+7*x^2)/((1+x)*(1-x)^2).
E.g.f.: 6*(x-1)*exp(x) + 7 - exp(-x). - corrected by Robert Israel, Jun 10 2015
a(n) = 6*(n-1) - (-1)^n. - Rolf Pleisch, Aug 04 2009
a(n) = 12*n - a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
a(n) = a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=5, a(2)=13. - Harvey P. Dale, Jun 13 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 + log(2 + sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Dec 28 2021
Showing 1-10 of 30 results. Next