cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A160348 Minimal recursive sequence such that if a(n) > 0 then always a(n) > a((f(2n+1)-1)/2), where f is defined by f(2n+1) = (3n+2)/A006519(3n+2) for n>=1, that is f(m) = A075677(2*m-1) for odd m.

Original entry on oeis.org

0, 2, 1, 6, 7, 5, 3, 11, 4, 13, 14, 10, 15, 52, 12, 50, 53, 9, 54, 59, 51, 62, 63, 49, 60, 65, 8, 68, 69, 58, 16, 75, 61, 56, 76, 48, 77, 80, 64, 84, 85, 67, 78, 88, 57, 44
Offset: 0

Views

Author

Vladimir Shevelev, May 10 2009; corrected May 13 2009, May 19 2009

Keywords

Comments

If the (3x+1)-Collatz conjecture is true, then this sequence is a permutation of the nonnegative integers.

Examples

			a(0)=0. Let m=3. Then f(m)=5, f^2(m)=1. The corresponding numbers n=(m-1)/2 are 1,2,0. By the condition, a(1) > a(2) > a(0)=0. Therefore let a(2)=1, a(1)=2. Furthermore, consider m=7. Then f(m)=11, f^2(m)=17, f^3(m)=13, f^4(m)=5. The corresponding numbers n=(m-1)/2 are 3,5,8,6,2 and, by the condition, a(3) > a(5) > a(8) > a(6) > a(2)=1. Therefore set a(6)=3 (the minimal value which yet did not appear), a(8)=4, a(5)=5, a(3)=6, etc.
		

Crossrefs

Extensions

Name edited by Michel Marcus, Feb 01 2021

A329480 a(n) = (1 - A075677(n))/6 if 6|(A075677(n)-1) or a(n) = (A075677(n) + 1)/6 if 6|(A075677(n)+1).

Original entry on oeis.org

0, 1, 0, 2, -1, 3, 1, 4, -2, 5, 0, 6, -3, 7, 2, 8, -4, 9, -1, 10, -5, 11, 3, 12, -6, 13, 1, 14, -7, 15, 4, 16, -8, 17, -2, 18, -9, 19, 5, 20, -10, 21, 0, 22, -11, 23, 6, 24, -12, 25, -3, 26, -13, 27, 7, 28, -14, 29, 2, 30, -15, 31, 8, 32, -16, 33, -4, 34, -17
Offset: 1

Views

Author

Fabian S. Reid, Jun 07 2020

Keywords

Comments

A fractal sequence.
This sequence is related to the Collatz Problem and can be illustrated on a logarithmic spiral to determine the odd numbers in the trajectory of a natural number of the form 6x+1 or 6x-1 simply by moving forward if the integer is positive, backward if the integer is negative, and continuing this forward-backward movement indefinitely.
When formatted as a table T with 4 columns, the third column T(n,3) is equal to the sequence. - Ruud H.G. van Tol, Oct 16 2023

Examples

			For n = 2, A075677(2) = 5, so a(2) = 1.
For n = 9, A075677(9) = 13, so a(9) = -2.
From _Ruud H.G. van Tol_, Oct 16 2023: (Start)
Array T begins:
 n|k_1|__2|__3|__4|
 1|  0   1   0   2
 2| -1   3   1   4
 3| -2   5   0   6
 4| -3   7   2   8
 5| -4   9  -1  10
 6| -5  11   3  12
... (End)
		

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[r=(c=3(2n-1)+1)/2^IntegerExponent[c,2];If[Mod[r,6]==1,(1-r)/6,(1+r)/6],{n, nterms}] (* Paolo Xausa, Nov 28 2021 *)
  • PARI
    a(n) = my(x=3*n-1); x>>=valuation(x, 2); if(1==x%6, 1-x, 1+x)/6; \\ Ruud H.G. van Tol, Oct 16 2023

Formula

a(n) = (1 - A075677(n))/6 when 1 = A075677(n) mod 6, or
a(n) = (A075677(n) + 1)/6 when 5 = A075677(n) mod 6.
From Ruud H.G. van Tol, Oct 16 2023: (Start)
a(4*n-1) = a(n).
T(n,1) = 1-n; T(n,2) = 2*n-1 = n - T(n,1); T(n,3) = T(floor((n-1)/4) + 1, (n-1) mod 4 + 1) = a(n); T(n,4) = 2*n = T(n,2) + 1. (End)

A008908 a(n) = (1 + number of halving and tripling steps to reach 1 in the Collatz (3x+1) problem), or -1 if 1 is never reached.

Original entry on oeis.org

1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112, 19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, 12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28, 28, 28, 15, 15, 15, 103
Offset: 1

Views

Author

Keywords

Comments

The number of steps (iterations of the map A006370) to reach 1 is given by A006577, this sequence counts 1 more. - M. F. Hasler, Nov 05 2017
When Collatz 3N+1 function is seen as an isometry over the dyadics, the halving step necessarily following each tripling is not counted, hence N -> N/2, if even, but N -> (3N+1)/2, if odd. Counting iterations of this map until reaching 1 leads to sequence A064433. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.

Crossrefs

Programs

  • Haskell
    a008908 = length . a070165_row
    -- Reinhard Zumkeller, May 11 2013, Aug 30 2012, Jul 19 2011
    
  • Maple
    a:= proc(n) option remember; 1+`if`(n=1, 0,
          a(`if`(n::even, n/2, 3*n+1)))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    Table[Length[NestWhileList[If[EvenQ[ # ], #/2, 3 # + 1] &, i, # != 1 &]], {i, 75}]
  • PARI
    a(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    def a(n):
        if n==1: return 1
        x=1
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017

Formula

a(n) = A006577(n) + 1.
a(n) = f(n,1) with f(n,x) = if n=1 then x else f(A006370(n),x+1).
a(A033496(n)) = A159999(A033496(n)). - Reinhard Zumkeller, May 04 2009
a(n) = A006666(n) + A078719(n).
a(n) = length of n-th row in A070165. - Reinhard Zumkeller, May 11 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017
Edited by M. F. Hasler, Nov 05 2017

A139391 Next odd term in Collatz trajectory with starting value n.

Original entry on oeis.org

1, 1, 5, 1, 1, 3, 11, 1, 7, 5, 17, 3, 5, 7, 23, 1, 13, 9, 29, 5, 1, 11, 35, 3, 19, 13, 41, 7, 11, 15, 47, 1, 25, 17, 53, 9, 7, 19, 59, 5, 31, 21, 65, 11, 17, 23, 71, 3, 37, 25, 77, 13, 5, 27, 83, 7, 43, 29, 89, 15, 23, 31, 95, 1, 49, 33, 101, 17, 13, 35, 107, 9, 55, 37, 113, 19, 29
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 17 2008

Keywords

Crossrefs

Cf. A075677 (odd bisection).

Programs

  • Mathematica
    a[n_]:=Select[NestWhileList[If[EvenQ[#],#/2,3#+1] &,n,#>1 &],OddQ]; Prepend[Table[If[EvenQ[n],a[n][[1]],a[n][[2]]],{n,2,77}],1] (* Jayanta Basu, May 27 2013 *)
  • PARI
    a(n) = my(x = if(n%2, 3*n+1, n/2)); x/2^valuation(x, 2); \\ Michel Marcus, Feb 27 2022
  • Python
    # first formula
    def A006370(n): return 3*n+1 if n%2 else n//2
    def a(n): return x if (x := A006370(n))%2 else a(x)
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
    
  • Python
    # fourth formula, uses A006370 above
    def A000265(n):
        while n%2 == 0: n //= 2
        return n
    def a(n): return A000265(A006370(n))
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Dec 15 2021
    

Formula

a(n) = A006370(n) if A006370(n) is odd, otherwise a(A006370(n)).
a(n) = A006370(n) iff n mod 4 = 2;
a(A016825(n)) = A006370(A016825(n));
a(n) = A000265(A006370(n)).
a(A160967(n)) = 1. - Reinhard Zumkeller, May 31 2009
For odd n, a(n) = a(2*A350091((n-1)/2)+1). - Ruud H.G. van Tol, Dec 17 2021
Sum_{k=1..n} a(k) ~ n^2 / 3. - Amiram Eldar, Aug 26 2024
a(n) = A000265(A014682(n)). - Alan Michael Gómez Calderón, Apr 10 2025

A072197 a(n) = 4*a(n-1) + 1 with a(0) = 3.

Original entry on oeis.org

3, 13, 53, 213, 853, 3413, 13653, 54613, 218453, 873813, 3495253, 13981013, 55924053, 223696213, 894784853, 3579139413, 14316557653, 57266230613, 229064922453, 916259689813, 3665038759253, 14660155037013, 58640620148053, 234562480592213, 938249922368853, 3752999689475413
Offset: 0

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 03 2002

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n - 1) = (-1)^n*charpoly(A, -2). - Milan Janjic, Jan 26 2010
Numbers whose binary representation is 11 together with n times 01. For example, 213 = 11010101 (2). - Omar E. Pol, Nov 22 2012
The Collatz-function starting with a(n) will terminate at 1 after 2*n + 7 steps. This is because 3*a(n) + 1 = 5*2^(2n + 1), and the Collatz-function starting with 5 terminates at 1 after 5 additional steps. So for example, a(2) = 53; Collatz sequence starting with 53 follows: 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1 (11 steps). - Bob Selcoe, Apr 03 2015
a(n) is also the sum of the numerator and denominator of the binary fractions 0.1, 0.101, 0.10101, 0.1010101... Thus 0.1 = 1/2 with 1 + 2 = 3, 0.101 = 1/2 + 1/8 = 5/8 with 5 + 8 = 13; 0.10101 = 1/2 + 1/8 + 1/32 = 21/32 with 21 + 32 = 53. - J. M. Bergot, Sep 28 2016
a(n), for n >= 2, is also the smallest odd number congruent to 5 modulo 8 for which the modified reduced Collatz map given in A324036 has n consecutive extra steps compared to the reduced Collatz map given in A075677. - Nicolas Vaillant, Philippe Delarue, Wolfdieter Lang, May 09 2019

Examples

			a(1) = 13 because a(0) = 3 and 4 * 3 + 1 = 13.
a(2) = 53 because a(1) = 13 and 4 * 13 + 1 = 53.
a(3) = 213 because a(2) = 53 and 4 * 53 + 1 = 213.
		

Crossrefs

Programs

Formula

a(n) = (10*4^n - 1)/3 = 10*A002450(n) + 3. - Henry Bottomley, Dec 02 2002
a(n) = 5*a(n-1) - 4*a(n-2), n > 1. - Vincenzo Librandi, Oct 31 2011
a(n) = 2^(2*(n + 1)) - (2^(2*n + 1) + 1)/3 = A000302(n + 1) - A007583(n). - Vladimir Pletser, Apr 12 2014
a(n) = (5*2^(2*n + 1) - 1)/3. - Bob Selcoe, Apr 03 2015
G.f.: (3-2*x)/((1-x)*(1-4*x)). - Colin Barker, Sep 28 2016
a(n) = A020988(n) + A020988(n+1) + 1 = 2*(A002450(n) + A002450(n+1)) + 1. - Yosu Yurramendi, Jan 24 2017
a(n) = A002450(n+1) + 2^(2*n+1). - Adam Michael Bere, May 13 2021
a(n) = a(n-1) + 5*2^(2*n-1), for n >= 1, with a(0) = 3. - Wolfdieter Lang, Aug 16 2021
a(n) = A178415(2,n+1) = A347834(2,n), arrays, for n >= 0. - Wolfdieter Lang, Nov 29 2021
E.g.f.: exp(x)*(10*exp(3*x) - 1)/3. - Elmo R. Oliveira, Apr 02 2025

Extensions

More terms from Henry Bottomley, Dec 02 2002

A371094 a(n) = m*(2^e) + ((4^e)-1)/3, where m = 3n+1, and e is the 2-adic valuation of m.

Original entry on oeis.org

1, 21, 7, 21, 13, 341, 19, 45, 25, 117, 31, 69, 37, 341, 43, 93, 49, 213, 55, 117, 61, 5461, 67, 141, 73, 309, 79, 165, 85, 725, 91, 189, 97, 405, 103, 213, 109, 1877, 115, 237, 121, 501, 127, 261, 133, 1109, 139, 285, 145, 597, 151, 309, 157, 5461, 163, 333, 169, 693, 175, 357, 181, 1493, 187, 381, 193, 789, 199
Offset: 0

Views

Author

Antti Karttunen (proposed by Ali Sada), Apr 19 2024

Keywords

Comments

Construction: take the binary expansion of 3n+1 (A016777(n)), and substitute "01" for all trailing 0-bits that follow after its odd part (= A067745(1+n)), of which there are A371093(n) in total. See the examples.

Examples

			For n=1, 3*n+1 = 4, "100" in binary, when we substitute 01's for the two trailing 0's, we obtain 21, "10101" in binary, therefore a(1) = 21.
For n=6, 3*6+1 = 19, "10011" in binary, and there are no trailing 0's, and no changes, therefore a(6) = 19.
For n=7, 3*7+1 = 22, "10110" in binary, with one trailing 0, which when replaced with 01 gives us 45, "101101" in binary, therefore a(7) = 45.
For n=229, there are e=4 trailing bit expansions 0 -> 01,
  3n+1 = binary  101011  0 0 0 0
  a(n) = binary  101011 01010101
		

Crossrefs

Cf. A016921, A372351 (even and odd bisection), A372290 (numbers occurring in the latter).
Cf. also A302338.

Programs

  • Mathematica
    Array[#2*(2^#3) + ((4^#3) - 1)/3 & @@ {#1, #2, IntegerExponent[#2, 2]} & @@ {#, 3 #1 + 1} &, 67, 0] (* Michael De Vlieger, Apr 19 2024 *)
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    
  • Python
    def A371094(n): return ((m:=3*n+1)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024

Formula

a(n) = A372289(A016777(n)).
a(2n) = A016777(2n) = A016921(n).

A075680 For odd numbers 2n-1, the minimum number of iterations of the reduced Collatz function R required to yield 1. The function R is defined as R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

0, 2, 1, 5, 6, 4, 2, 5, 3, 6, 1, 4, 7, 41, 5, 39, 8, 3, 6, 11, 40, 9, 4, 38, 7, 7, 2, 41, 10, 10, 5, 39, 8, 8, 3, 37, 42, 3, 6, 11, 6, 40, 1, 9, 9, 33, 4, 38, 43, 7, 7, 31, 12, 36, 41, 24, 2, 10, 5, 10, 34, 15, 39, 15, 44, 8, 8, 13, 32, 13, 3, 37, 42, 42, 6, 3, 11, 30, 11, 18, 35, 6, 40, 23
Offset: 1

Views

Author

T. D. Noe, Sep 25 2002

Keywords

Comments

See A075677 for the function R applied to the odd numbers once. The 3x+1 conjecture asserts that a(n) is a finite number for all n. The function R applied to the odd numbers shows the essential behavior of the 3x+1 iterations.
Bisection of A006667. - T. D. Noe, Jun 01 2006

Examples

			a(4) = 5 because 7 is the fourth odd number and 5 iterations are needed: R(R(R(R(R(7)))))=1.
		

Crossrefs

Cf. A075677.
Cf. A075684 for the largest number attained during the iteration.
Cf. A000265.
Cf. A060445 which also counts intermediate even steps.
Cf. A173732.

Programs

  • Haskell
    a075680 n = snd $ until ((== 1) . fst)
                (\(x, i) -> (a000265 (3 * x + 1), i + 1)) (2 * n - 1, 0)
    -- Reinhard Zumkeller, Jan 08 2014
    
  • Mathematica
    nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[m=n; cnt=0; If[n>1, While[m=nextOddK[m]; cnt++; m!=1]]; cnt, {n, 1, 200, 2}]
  • PARI
    a(n)=my(s); n+=n-1; while(n>1, n+=n>>1+1; if(n%2==0, n>>=valuation(n,2)); s++); s \\ Charles R Greathouse IV, Dec 22 2021
  • Perl
    sub a {
      my $v = 2 * shift() - 1;
      my $c = 0;
      until (1 == $v) {
        $v = 3 * $v + 1;
        $v /= 2 until ($v & 1);
        $c += 1;
      }
      return $c;
    } # Ruud H.G. van Tol, Nov 16 2021
    

Formula

a(n) = a(A173732(n-1) + 1) + 1 for n >= 2. - Alan Michael Gómez Calderón, Apr 10 2025

A257852 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (2^n*(6*k - 3 - 2*(-1)^n) - 1)/3, n,k >= 1.

Original entry on oeis.org

3, 1, 7, 13, 9, 11, 5, 29, 17, 15, 53, 37, 45, 25, 19, 21, 117, 69, 61, 33, 23, 213, 149, 181, 101, 77, 41, 27, 85, 469, 277, 245, 133, 93, 49, 31, 853, 597, 725, 405, 309, 165, 109, 57, 35, 341, 1877, 1109, 981, 533, 373, 197, 125, 65, 39
Offset: 1

Views

Author

L. Edson Jeffery, Jul 12 2015

Keywords

Comments

Sequence is a permutation of the odd natural numbers.
Let N_1 denote the set of odd natural numbers, and let |y|_2 denote 2-adic valuation of y. Define the map F : N_1 -> N_1 by F(x) = (3*x + 1)/2^|3*x+1|_2 (cf. A075677). Then row n of A is the set of all x in N_1 for which |3*x + 1|_2 = A371093(x) = n. Hence F(A(n,k)) = 6*k - 3 - 2*(-1)^n.

Examples

			From _Ruud H.G. van Tol_, Oct 17 2023, corrected and extended by _Antti Karttunen_, Apr 18 2024: (Start)
Array A begins:
n\k|   1|   2|   3|   4|   5|   6|   7|   8| ...
---+---------------------------------------------
1  |   3,   7,  11,  15,  19,  23,  27,  31, ...
2  |   1,   9,  17,  25,  33,  41,  49,  57, ...
3  |  13,  29,  45,  61,  77,  93, 109, 125, ...
4  |   5,  37,  69, 101, 133, 165, 197, 229, ...
5  |  53, 117, 181, 245, 309, 373, 437, 501, ...
6  |  21, 149, 277, 405, 533, 661, 789, 917, ...
... (End)
		

Crossrefs

Cf. A006370, A075677, A096773 (after its initial 0, column 1 of this array).
Cf. A004767, A017077, A082285, A238477 (rows 1-4).
Cf. A371092, A371093 (column and row indices for odd numbers).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(2^n*(6*k - 3 - 2*(-1)^n) - 1)/3, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(2^(n - k + 1)*(6*k - 3 - 2*(-1)^(n - k + 1)) - 1)/ 3, {n, 10}, {k, n}]]
  • PARI
    up_to = 105;
    A257852sq(n,k) = ((2^n * (6*k - 3 - 2*(-1)^n) - 1)/3);
    A257852list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A257852sq((a-(col-1)),col))); (v); };
    v257852 = A257852list(up_to);
    A257852(n) = v257852[n]; \\ Antti Karttunen, Apr 18 2024

Formula

From Ruud H.G. van Tol, Oct 17 2023: (Start)
A(n,k+1) = A(n,k) + 2^(n+1).
A(n+2,k) = A(n,k)*4 + 1.
A(1,k) = A004767(k-1).
A(2,k) = A017077(k-1).
A(3,k) = A082285(k-1).
A(4,k) = A238477(k). (End)
For all odd positive numbers n, A(A371093(n), A371092(n)) = n. - Antti Karttunen, Apr 24 2024

A122458 "Dropping time" of the reduced Collatz iteration starting with 2n+1.

Original entry on oeis.org

0, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 3, 1, 37, 1, 35, 1, 2, 1, 5, 1, 3, 1, 34, 1, 2, 1, 3, 1, 4, 1, 34, 1, 2, 1, 32, 1, 3, 1, 5, 1, 2, 1, 3, 1, 28, 1, 5, 1, 2, 1, 26, 1, 3, 1, 19, 1, 2, 1, 3, 1, 5, 1, 9, 1, 2, 1, 4, 1, 3, 1, 4, 1, 2, 1, 3, 1, 25, 1, 13, 1, 2, 1, 18, 1, 3, 1, 5, 1, 2, 1, 3, 1, 4, 1, 8, 1, 2, 1, 5
Offset: 0

Views

Author

T. D. Noe, Sep 08 2006

Keywords

Comments

We count only the 3x+1 steps of the usual Collatz iteration. We stop counting when the iteration produces a number less than the initial 2n+1. For a fixed dropping time k, let N(k)=A100982(k) and P(k)=2^(A020914(k)-1). There are exactly N(k) odd numbers less than P(k) with dropping time k. Moreover, the sequence is periodic: if d is one of the N(k) odd numbers, then k=a(d)=a(d+i*P(k)) for all i>=0. This periodicity makes it easy to compute the average dropping time of the reduced Collatz iteration: Sum_{k>0} k*N(k)/P(k) = 3.492651852186... (A122791).

Examples

			a(3)=4 because, starting with 7, the iteration produces 11,17,13,5 and the last term is less than 7.
n = 13: the fr trajectory for 2*13+1 = 27 is 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1 with 41 terms (without 27), hence fr^[37] = 23 < 27  and  a(13) = 37. - _Wolfdieter Lang_, Feb 20 2019
		

References

  • Victor Klee and Stan Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical Association of America (1991) pp. 225-229, 308-309. [called on p. 225 stopping time for 2n+1 and the function C(2*n+1) = A075677(n+1), n >= 0. - Wolfdieter Lang, Feb 20 2019]

Crossrefs

Cf. A000265, A060445, A075677 (one step of the reduced Collatz iteration), A075680.
Cf. A087113 (indices of 1's), A017077 (indices of 2's), A122791 (limit mean).

Programs

  • Mathematica
    nextOddK[n_]:=Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; dt[n_]:=Module[{m=n, cnt=0}, If[n>1, While[m=nextOddK[m]; cnt++; m>n]]; cnt]; Table[dt[n],{n,1,301,2}]

Formula

a(n) is the least k for which fr^[k](n) < 2*n + 1, for n >= 1 and k >= 1, where fr(n) = A075677(n+1) = A000265(3*n+2). No k satisfies this for n = 0: a(0) := 0 by convention. The dropping time a(n) is finite, for n >= 1, if the Collatz conjecture is true. - Wolfdieter Lang, Feb 20 2019
a(1+i*8) = 2, for i>=0, because A100982(2) = 1 is odd, and A020914(2) = 4 gives P(2) = 2^(4-1) = 8. - Ruud H.G. van Tol, Dec 19 2021

A372443 The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.

Original entry on oeis.org

27, 41, 31, 47, 71, 107, 161, 121, 91, 137, 103, 155, 233, 175, 263, 395, 593, 445, 167, 251, 377, 283, 425, 319, 479, 719, 1079, 1619, 2429, 911, 1367, 2051, 3077, 577, 433, 325, 61, 23, 35, 53, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 01 2024

Keywords

Crossrefs

Column 14 of A372283, Row 13 of A256598 (but only up to the first 1).
Row 1 of A372560.
From term 47 to the first 1 same as A088593.
Sequences derived from this one or related to:
A372445 column index of a(n) in array A257852,
A372362 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,
A372447 binary lengths minus 1,
A372446 a(n) xored with the term of A086893 having the same binary length,
A372453 a(n) minus the term of A086893 having the same binary length.

Programs

  • PARI
    R(n) = { n = 1+3*n; n>>valuation(n, 2); };
    A372443(n) = { my(x=27); while(n, x=R(x); n--); (x); };

Formula

a(0) = 27; for n > 0, a(n) = R(a(n-1)), where R(n) = (3*n+1)/2^A371093(n) = A000265(3*n+1).
For n > 0, a(n) = R(A372444(n-1)) = A000265(1+3*A372444(n-1)).
Showing 1-10 of 46 results. Next