cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A186701 Partial sums of Collatz sequence (A008908).

Original entry on oeis.org

1, 3, 11, 14, 20, 29, 46, 50, 70, 77, 92, 102, 112, 130, 148, 153, 166, 187, 208, 216, 224, 240, 256, 267, 291, 302, 414, 433, 452, 471, 578, 584, 611, 625, 639, 661, 683, 705, 740, 749, 859, 868, 898, 915, 932, 949, 1054, 1066, 1091, 1116, 1141, 1153
Offset: 1

Views

Author

Harvey P. Dale, Feb 25 2011

Keywords

Crossrefs

Cf. A008908.

Programs

  • Mathematica
    Accumulate[Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&]],{n,100}]]

A275968 Smaller of two consecutive primes p and q such that c(p) = c(q), where c(n) = A008908(n) is the length of x, f(x), f(f(x)), ... , 1 in the Collatz conjecture.

Original entry on oeis.org

173, 409, 419, 421, 439, 487, 521, 557, 571, 617, 761, 887, 919, 1009, 1039, 1117, 1153, 1171, 1217, 1327, 1373, 1549, 1559, 1571, 1657, 1693, 1709, 1721, 1733, 1783, 1831, 1861, 1901, 1993, 1997, 2053, 2089, 2339, 2393, 2521, 2539, 2647, 2657, 2677, 2693, 2777
Offset: 1

Views

Author

Abhiram R Devesh, Aug 15 2016

Keywords

Comments

If x is even f(x) = x/2 else f(x) = 3x + 1.

Examples

			a(1) = p = 173; q = 179
c(p) = c(q) = 32
		

Crossrefs

Cf. A006577 (Collatz trajectory lengths), A078417, A008908.

Programs

  • Mathematica
    t = Table[Length@ NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &] - 1, {n, 10^4}]; Prime@ Flatten@ Position[#, k_ /; Length@ k == 1] &@ Map[Union@ Part[t, #] &, #] &@ Partition[#, 2, 1] &@ Prime@ Range@ 410 (* Michael De Vlieger, Sep 01 2016 *)
  • PARI
    A008908(n)=my(c=1); while(n>1, n=if(n%2, 3*n+1, n/2); c++); c
    t=A008908(p=2); forprime(q=3,1e4, tt=A008908(q); if(t==tt, print1(p", ")); p=q; t=tt) \\ Charles R Greathouse IV, Sep 01 2016
    
  • Python
    import sympy
    def lcs(n):
        a=1
        while n>1:
            if n%2==0:
                n=n//2
            else:
                n=(3*n)+1
            a=a+1
        return(a)
    m=2
    while m>0:
        n=sympy.nextprime(m)
        if lcs(m)==lcs(n):
            print(m,)
        m=n
    # Abhiram R Devesh, Sep 02 2016

A224399 Numbers k such that A224166(k) = A008908(k).

Original entry on oeis.org

1, 2, 4, 8, 13, 16, 26, 32, 35, 52, 64, 70, 81, 93, 104, 128, 140, 162, 181, 186, 208, 241, 256, 280, 324, 362, 372, 416, 455, 482, 483, 512, 543, 560, 607, 643, 645, 648, 724, 744, 809, 815, 832, 903, 910, 914, 915, 964, 966, 967, 1024, 1079, 1081, 1086, 1087
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2013

Keywords

Comments

Numbers k for which the number of iterations starting with -k to reach the last number of the cycle equals the number of iterations starting with k to reach 1 in Collatz (3x+1) trajectory of +/-k.

Examples

			a(6) = 26 because A224166(26) = A008908(26) = 11.
The trajectory of - 26 is :
-26 -> - 13 -> -38 -> -19 -> -56 -> -28 -> -14 -> -7 -> -20 -> -10 -> -5 with 11 iterations (the first value is counted);
The trajectory of 26 is :
26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 with 11 iterations (the first value is counted).
		

Crossrefs

Programs

  • Maple
    z:={1}:
      for m from -1 by -1 to -1500 do:
       lst:={m}:a:=0: x:=m: lst:=lst union {x}:
            for i from 1 to 100 do:
             lst:=lst union {x}:
             if irem(abs(x), 2)=1
             then
             x:=3*x+1: lst:=lst union {x}:
             else
             x:=x/2: lst:=lst union {x}:
             fi:
             od:
             n0:=nops(lst):
             if lst intersect z = {1}
             then
             n1:=n0-2:
             else
             n1:=n0-1:
          fi:
           a:=0:y:=-m:
              for it from 1 to 100 while (y>1) do:
                 if irem(y,2)=0
                 then
                 y := y/2:a:=a+1:
                 else
                  y := 3*y+1: a := a+1:
                 fi:
              od:
              if n1=a
              then
              printf(`%d, `,-m):
              else
              fi:
    od:

A247717 Numbers n such that A033493(n)/A008908(n) is an integer.

Original entry on oeis.org

1, 5, 18, 58, 99, 153, 176, 228, 238, 240, 282, 341, 345, 421, 475, 585, 629, 712, 739, 779, 802, 815, 974, 995, 1078, 1088, 1237, 1257, 1262, 1290, 1346, 1398, 1424, 1459, 1673, 1694, 1724, 1731, 1802, 1811, 1916, 1928, 1988, 2170, 2222, 2260, 2272, 2275, 2317, 2365, 2397, 2410
Offset: 1

Views

Author

Derek Orr, Sep 22 2014

Keywords

Comments

Equivalently, these are also numbers n such that the average of the numbers in the Collatz (3x+1) iteration of n is an integer.

Crossrefs

Programs

  • PARI
    Tavg(n)=c=0;s=n;while(n!=1,if(n==Mod(0,2),n=n/2;c++;s+=n);if(n==Mod(1,2)&&n!=1,n=3*n+1;s+=n;c++));s/(c+1)
    n=1;while(n<10^4,if(floor(Tavg(n))==Tavg(n),print1(n,", "));n++)

A260801 Primes p such that A008908(p) is also prime.

Original entry on oeis.org

2, 7, 17, 29, 31, 71, 89, 107, 113, 127, 131, 157, 181, 223, 239, 263, 271, 277, 281, 283, 313, 337, 379, 409, 419, 421, 431, 503, 547, 571, 577, 691, 701, 727, 757, 809, 821, 857, 883, 947, 953, 971, 1031, 1109, 1129, 1153, 1163, 1231, 1283, 1291, 1327, 1361, 1447, 1487, 1531, 1559, 1567, 1583
Offset: 1

Views

Author

Ivan N. Ianakiev, Jul 31 2015

Keywords

Examples

			7 is prime and A008908(7) is 17, which is also prime. Therefore, 7 is in the sequence.
		

Crossrefs

Cf. A008908.

Programs

  • Mathematica
    collatz[n_]:=If[EvenQ[n],n/2,3*n+1];
    seq[n_]:=Length[NestWhileList[collatz,n,#!= 1&]]
    Select[Flatten[Position[seq/@Range[7!],_?PrimeQ]],PrimeQ]
  • PARI
    T(n)=c=0;while(n!=1,if(n%2,n=3*n+1;c++);if(!(n%2),n=n/2;c++));c+1
    forprime(p=1,10^3,if(isprime(T(p)),print1(p,", "))) \\ Derek Orr, Aug 27 2015

A339614 Inputs n that yield a record-breaking value of A008908(n)/(log_2(n)+1) for the Collatz conjecture.

Original entry on oeis.org

1, 3, 7, 9, 27, 26623, 35655, 52527, 142587, 156159, 230631, 626331, 837799, 1723519, 3542887, 3732423, 5649499, 6649279, 8400511, 63728127, 3743559068799, 100759293214567, 104899295810901231
Offset: 1

Views

Author

Matthew Russell Downey, Dec 10 2020

Keywords

Comments

The metric A008908(n)/(log_2(n)+1) is always equal to 1 for any power of 2 (where 1 is the smallest possible value).

Examples

			a(1) = 1, which is trivial, because the first element in any sequence is record setting.
a(5) = 27, because A008908(n)/(log_2(n)+1) yields a maximum value at n=27 among the first 27 elements, and there are 4 record-breaking elements beforehand.
		

Crossrefs

Programs

  • Python
    import math
    oeis_A006877 = [1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 10623, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799, 1117065, 1501353, 1723519, 2298025, 3064033, 3542887, 3732423, 5649499, 6649279, 8400511, 11200681, 14934241, 15733191, 31466382, 36791535, 63728127]
    def stopping_time(n):
        time = 1
        while n>1:
            n = 3*n + 1 if n & 1 else n//2
            time += 1
        return time
    def stopping_time_metric(n):
        time = stopping_time(n)
        logarithmic_distance = (math.log(n, 2)+1)
        return float(time/logarithmic_distance)
    result = []
    record_input = oeis_A006877[0]
    record_stopping_time_metric = stopping_time_metric(record_input)
    result.append(record_input)
    for n in range(1, len(oeis_A006877)):
        current_input = oeis_A006877[n]
        current_stopping_time_metric = stopping_time_metric(current_input)
        if current_stopping_time_metric > record_stopping_time_metric:
            record_input = current_input
            record_stopping_time_metric = current_stopping_time_metric
            result.append(record_input)
    for n in range(len(result)):
        print(result[n], end=", ")

A006577 Number of halving and tripling steps to reach 1 in '3x+1' problem, or -1 if 1 is never reached.

Original entry on oeis.org

0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18, 106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24, 24, 11, 11, 112, 112, 19, 32, 19, 32, 19, 19, 107, 107, 6, 27, 27, 27, 14, 14, 14, 102, 22
Offset: 1

Views

Author

Keywords

Comments

The 3x+1 or Collatz problem is as follows: start with any number n. If n is even, divide it by 2, otherwise multiply it by 3 and add 1. Do we always reach 1? This is a famous unsolved problem. It is conjectured that the answer is yes.
It seems that about half of the terms satisfy a(i) = a(i+1). For example, up to 10000000, 4964705 terms satisfy this condition.
n is an element of row a(n) in triangle A127824. - Reinhard Zumkeller, Oct 03 2012
The number of terms that satisfy a(i) = a(i+1) for i being a power of ten from 10^1 through 10^10 are: 0, 31, 365, 4161, 45022, 477245, 4964705, 51242281, 526051204, 5378743993. - John Mason, Mar 02 2018
5 seems to be the only number whose value matches its total number of steps (checked to n <= 10^9). - Peter Woodward, Feb 15 2021

Examples

			a(5)=5 because the trajectory of 5 is (5,16,8,4,2,1).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, E16.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A070165 for triangle giving trajectories of n = 1, 2, 3, ....

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a006577 n = fromJust $ findIndex (n `elem`) a127824_tabf
    -- Reinhard Zumkeller, Oct 04 2012, Aug 30 2012
    
  • Maple
    A006577 := proc(n)
            local a,traj ;
            a := 0 ;
            traj := n ;
            while traj > 1 do
                    if type(traj,'even') then
                            traj := traj/2 ;
                    else
                            traj := 3*traj+1 ;
                    end if;
                    a := a+1 ;
            end do:
            return a;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    f[n_] := Module[{a=n,k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=a*3+1]]; k]; Table[f[n],{n,4!}] (* Vladimir Joseph Stephan Orlovsky, Jan 08 2011 *)
    Table[Length[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&]]-1,{n,80}] (* Harvey P. Dale, May 21 2012 *)
  • PARI
    a(n)=if(n<0,0,s=n; c=0; while(s>1,s=if(s%2,3*s+1,s/2); c++); c)
    
  • PARI
    step(n)=if(n%2,3*n+1,n/2);
    A006577(n)=if(n==1,0,A006577(step(n))+1); \\ Michael B. Porter, Jun 05 2010
    
  • Python
    def a(n):
        if n==1: return 0
        x=0
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            x+=1
            if n<2: break
        return x
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 05 2017
    
  • Python
    def A006577(n):
        ct = 0
        while n != 1: n = A006370(n); ct += 1
        return ct # Ya-Ping Lu, Feb 22 2024
    
  • R
    collatz<-function(n) ifelse(n==1,0,1+ifelse(n%%2==0,collatz(n/2),collatz(3*n+1))); sapply(1:72, collatz) # Christian N. K. Anderson, Oct 09 2024

Formula

a(n) = A006666(n) + A006667(n).
a(n) = A112695(n) + 2 for n > 2. - Reinhard Zumkeller, Apr 18 2008
a(n) = A008908(n) - 1. - L. Edson Jeffery, Jul 21 2014
a(n) = A135282(n) + A208981(n) (after Alonso del Arte's comment in A208981), if 1 is reached, otherwise a(n) = -1. - Omar E. Pol, Apr 10 2022
a(n) = 2*A007814(n + 1) + a(A085062(n)) + 1 for n > 1. - Wing-Yin Tang, Jan 06 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
"Escape clause" added to definition by N. J. A. Sloane, Jun 06 2017

A070165 Irregular triangle read by rows giving trajectory of n in Collatz problem.

Original entry on oeis.org

1, 2, 1, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 5, 16, 8, 4, 2, 1, 6, 3, 10, 5, 16, 8, 4, 2, 1, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 8, 4, 2, 1, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 10, 5, 16, 8, 4, 2, 1, 11, 34, 17, 52, 26, 13
Offset: 1

Views

Author

Eric W. Weisstein, Apr 23 2002

Keywords

Comments

n-th row has A008908(n) entries (unless some n never reaches 1, in which case the triangle ends with an infinite row). [Escape clause added by N. J. A. Sloane, Jun 06 2017]
A216059(n) is the smallest number not occurring in n-th row; see also A216022.
Comment on the mp3 file from Gordon Charlton (the recording artist Beat Frequency). The piece uses the first 3242 terms (i.e. the first 100 hailstone sequences), with pitch modulus 36, duration modulus 2. Its musicality stems from the many repetitions and symmetries within the sequence, and in particular the infrequency of multiples of 3. This means that when the pitch modulus is a multiple of 12 the notes are predominantly in the symmetric octatonic scale, known to modern classical composers as the second of Messiaen's modes of limited transposition, and to jazz musicians as half-whole diminished. - N. J. A. Sloane, Jan 30 2019

Examples

			The irregular array a(n,k) starts:
n\k   0  1  2  3  4   5  6   7  8  9 10 11 12 13 14 15 16 17 18 19
1:    1
2:    2  1
3:    3 10  5 16  8   4  2   1
4:    4  2  1
5:    5 16  8  4  2   1
6:    6  3 10  5 16   8  4   2  1
7:    7 22 11 34 17  52 26  13 40 20 10  5 16  8  4  2  1
8:    8  4  2  1
9:    9 28 14  7 22  11 34  17 52 26 13 40 20 10  5 16  8  4  2  1
10:  10  5 16  8  4   2  1
11:  11 34 17 52 26  13 40  20 10  5 16  8  4  2  1
12:  12  6  3 10  5  16  8   4  2  1
13:  13 40 20 10  5  16  8   4  2  1
14:  14  7 22 11 34  17 52  26 13 40 20 10  5 16  8  4  2  1
15:  15 46 23 70 35 106 53 160 80 40 20 10  5 16  8  4  2  1
... Reformatted and extended by _Wolfdieter Lang_, Mar 20 2014
		

Crossrefs

Cf. A006370 (step), A008908 (row lengths), A033493 (row sums).
Cf. A220237 (sorted rows), A347270 (array), A192719.
Cf. A070168 (Terras triangle), A256598 (reduced triangle).
Cf. A254311, A257480 (and crossrefs therein).
Cf. A280408 (primes).

Programs

  • Haskell
    a070165 n k = a070165_tabf !! (n-1) !! (k-1)
    a070165_tabf = map a070165_row [1..]
    a070165_row n = (takeWhile (/= 1) $ iterate a006370 n) ++ [1]
    a070165_list = concat a070165_tabf
    -- Reinhard Zumkeller, Oct 07 2011
    
  • Maple
    T:= proc(n) option remember; `if`(n=1, 1,
          [n, T(`if`(n::even, n/2, 3*n+1))][])
        end:
    seq(T(n), n=1..15);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Flatten[Table[Collatz[n], {n, 10}]] (* T. D. Noe, Dec 03 2012 *)
  • PARI
    row(n, lim=0)={if (n==1, return([1])); my(c=n, e=0, L=List(n)); if(lim==0, e=1; lim=n*10^6); for(i=1, lim, if(c%2==0, c=c/2, c=3*c+1); listput(L, c); if(e&&c==1, break)); return(Vec(L)); } \\ Anatoly E. Voevudko, Mar 26 2016; edited by Michel Marcus, Aug 10 2021
    
  • Python
    def a(n):
        if n==1: return [1]
        l=[n, ]
        while True:
            if n%2==0: n/=2
            else: n = 3*n + 1
            if n not in l:
                l+=[n, ]
                if n<2: break
            else: break
        return l
    for n in range(1, 101): print(a(n)) # Indranil Ghosh, Apr 14 2017

Formula

T(n,k) = T^{(k)}(n) with the k-th iterate of the Collatz map T with T(n) = 3*n+1 if n is odd and T(n) = n/2 if n is even, n >= 1. T^{(0)}(n) = n. k = 0, 1, ..., A008908(n) - 1. - Wolfdieter Lang, Mar 20 2014

Extensions

Name specified and row length A-number corrected by Wolfdieter Lang, Mar 20 2014

A033496 Numbers m that are the largest number in their Collatz (3x+1) trajectory.

Original entry on oeis.org

1, 2, 4, 8, 16, 20, 24, 32, 40, 48, 52, 56, 64, 68, 72, 80, 84, 88, 96, 100, 104, 112, 116, 128, 132, 136, 144, 148, 152, 160, 168, 176, 180, 184, 192, 196, 200, 208, 212, 224, 228, 232, 240, 244, 256, 260, 264, 272, 276, 280, 288, 296, 304, 308, 312, 320, 324
Offset: 1

Views

Author

Keywords

Comments

Or, possible peak values in 3x+1 trajectories: 1,2 and m=16k+4,16k+8,16k but not for all k; those 4k numbers [like m=16k+12 and others] which cannot be such peaks are listed in A087252.
Possible values of A025586(m) in increasing order. See A275109 (number of times each value of a(n) occurs in A025586). - Jaroslav Krizek, Jul 17 2016

Examples

			These peak values occur in 1, 3, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 27, 30, 39, 44, 71, 75, 1579 [3x+1]-iteration trajectories started with different initial values. This list most probably is incomplete.
From _Hartmut F. W. Hoft_, Jun 24 2016: (Start)
Let n be the maximum in some Collatz trajectory and let F(n), the initial fan of n, be the set of all initial values less than or equal to n whose Collatz trajectories lead to n as their maximum. Then the size of F(n) never equals 2, 4, 5, 7 or 10 (see the link).
Conjecture: Every number k > 10 occurs as the size of F(n) for some n.
Fans F(n) of size k, for all 10 < k < 355, exist for 4 <= n <= 50,000,000. The largest fan in this range, F(41163712), has size 7450.
(End)
		

Crossrefs

Cf. A095384 (contains a definition of Collatz[]).

Programs

  • Haskell
    a033496 n = a033496_list !! (n-1)
    a033496_list = 1 : filter f [2, 4 ..] where
       f x = x == maximum (takeWhile (/= 1) $ iterate a006370 x)
    -- Reinhard Zumkeller, Oct 22 2015
    
  • Magma
    Set(Sort([Max([k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]): n in [1..2^10] | Max([k eq 1 select n else IsOdd(Self(k-1)) and not IsOne(Self(k-1)) select 3*Self(k-1)+1 else Self(k-1) div 2: k in [1..5*n]]) le 2^10])) // Jaroslav Krizek, Jul 17 2016
    
  • Mathematica
    Collatz[a0_Integer, maxits_:1000] := NestWhileList[If[EvenQ[ # ], #/2, 3# + 1] &, a0, Unequal[ #, 1, -1, -10, -34] &, 1, maxits]; (* Collatz[n] function definition by Eric Weisstein *)
    Select[Range[324], Max[Collatz[#]] == # &] (* T. D. Noe, Feb 28 2013 *)
  • Python
    def a(n):
        if n<2: return [1]
        l=[n, ]
        while True:
            if n%2==0: n//=2
            else: n = 3*n + 1
            if n not in l:
                l.append(n)
                if n<2: break
            else: break
        return l
    print([n for n in range(1, 501) if max(a(n)) == n]) # Indranil Ghosh, Apr 14 2017

Formula

A008908(a(n)) = A159999(a(n)). - Reinhard Zumkeller, May 04 2009
Max(A070165(a(n),k): k=1..A008908(a(n))) = A070165(a(n),1) = a(n). - Reinhard Zumkeller, Oct 22 2015

A089357 a(n) = 2^(6*n).

Original entry on oeis.org

1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 4398046511104, 281474976710656, 18014398509481984, 1152921504606846976, 73786976294838206464, 4722366482869645213696, 302231454903657293676544, 19342813113834066795298816
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Dec 26 2003

Keywords

Comments

For n > 0, numbers M such that a(n) is the highest power of 2 in the Collatz (3x+1) iteration are given by 2^k*(a(n)-1)/3 for any k >= 0. Example: For n = 1, the numbers such that 64 is the highest power of 2 in the Collatz (3x+1) iteration are given by 2^k*(64-1)/3 = 21*2^k for any k >= 0. See A008908 for more information on the Collatz (3x+1) iteration. - Derek Orr, Sep 22 2014
Powers of 64. - Alexander Fraebel, Aug 29 2020

Crossrefs

Programs

Formula

G.f.: 1/(1-64*x). - Philippe Deléham, Nov 24 2008
a(n) = 63*a(n-1) + 64^(n-1), a(0)=1. - Vincenzo Librandi, Jun 07 2011
E.g.f.: exp(64*x). - Ilya Gutkovskiy, Jul 02 2016
a(n) = A000079(A008588(n)). - Wesley Ivan Hurt, Jul 02 2016
a(n) = 64*a(n-1). - Miquel Cerda, Oct 27 2016
Showing 1-10 of 44 results. Next