A355187 Number of Collatz trajectories (A070165) for all positive integers <= 10^n that contain 2^4 as the greatest power of 2 within its trajectory.
6, 89, 933, 9401, 93744, 937712, 9379078, 93773848
Offset: 1
Examples
a(1)=6 because the first 10 positive integers have trajectories, of which 6 have 2^4 as the greatest power of 2 in their trajectory. These integers are 3, 5, 6, 7, 9, 10. See trajectory tables below. 1: 1 2: 2 1 3: 3 10 5 16 8 4 2 1 4: 4 2 1 5: 5 16 8 4 2 1 6: 6 3 10 5 16 8 4 2 1 7: 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 8: 8 4 2 1 9: 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 10: 10 5 16 8 4 2 1
Programs
-
Mathematica
collatz[n_] := Module[{}, If[OddQ[n], 3n+1, n/2]]; step[n_] := Module[{p=0, m=n, q}, While[!IntegerQ[q=Log[2, m]], m=collatz[m]; p++]; {p, q}]; Counts[Table[Last@step[n], {n, 1, 10^5}]][[Key[4]]]
Comments