cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A002450 a(n) = (4^n - 1)/3.

Original entry on oeis.org

0, 1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, 349525, 1398101, 5592405, 22369621, 89478485, 357913941, 1431655765, 5726623061, 22906492245, 91625968981, 366503875925, 1466015503701, 5864062014805, 23456248059221, 93824992236885, 375299968947541
Offset: 0

Views

Author

Keywords

Comments

For n > 0, a(n) is the degree (n-1) "numbral" power of 5 (see A048888 for the definition of numbral arithmetic). Example: a(3) = 21, since the numbral square of 5 is 5(*)5 = 101(*)101(base 2) = 101 OR 10100 = 10101(base 2) = 21, where the OR is taken bitwise. - John W. Layman, Dec 18 2001
a(n) is composite for all n > 2 and has factors x, (3*x + 2*(-1)^n) where x belongs to A001045. In binary the terms greater than 0 are 1, 101, 10101, 1010101, etc. - John McNamara, Jan 16 2002
Number of n X 2 binary arrays with path of adjacent 1's from upper left corner to right column. - R. H. Hardin, Mar 16 2002
The Collatz-function iteration started at a(n), for n >= 1, will end at 1 after 2*n+1 steps. - Labos Elemer, Sep 30 2002 [corrected by Wolfdieter Lang, Aug 16 2021]
Second binomial transform of A001045. - Paul Barry, Mar 28 2003
All members of sequence are also generalized octagonal numbers (A001082). - Matthew Vandermast, Apr 10 2003
Also sum of squares of divisors of 2^(n-1): a(n) = A001157(A000079(n-1)), for n > 0. - Paul Barry, Apr 11 2003
Binomial transform of A000244 (with leading zero). - Paul Barry, Apr 11 2003
Number of walks of length 2n between two vertices at distance 2 in the cycle graph C_6. For n = 2 we have for example 5 walks of length 4 from vertex A to C: ABABC, ABCBC, ABCDC, AFABC and AFEDC. - Herbert Kociemba, May 31 2004
Also number of walks of length 2n + 1 between two vertices at distance 3 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004
a(n+1) is the number of steps that are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to mark one vertex on the lattice (compare A080674). - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 13 2005
a(n+1) is the sum of square divisors of 4^n. - Paul Barry, Oct 13 2005
a(n+1) is the decimal number generated by the binary bits in the n-th generation of the Rule 250 elementary cellular automaton. - Eric W. Weisstein, Apr 08 2006
a(n-1) / a(n) = percentage of wasted storage if a single image is stored as a pyramid with a each subsequent higher resolution layer containing four times as many pixels as the previous layer. n is the number of layers. - Victor Brodsky (victorbrodsky(AT)gmail.com), Jun 15 2006
k is in the sequence if and only if C(4k + 1, k) (A052203) is odd. - Paul Barry, Mar 26 2007
This sequence also gives the number of distinct 3-colorings of the odd cycle C(2*n - 1). - Keith Briggs, Jun 19 2007
All numbers of the form m*4^m + (4^m-1)/3 have the property that they are sums of two squares and also their indices are the sum of two squares. This follows from the identity m*4^m + (4^m-1)/3 = 4(4(..4(4m + 1) + 1) + 1) + 1 ..) + 1. - Artur Jasinski, Nov 12 2007
For n > 0, terms are the numbers that, in base 4, are repunits: 1_4, 11_4, 111_4, 1111_4, etc. - Artur Jasinski, Sep 30 2008
Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 5, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = charpoly(A,1). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 3, 4; 2) = A(0, 1; 4, 0; 1) of the family of sequences [a, b : c, d : k] considered by G. Detlefs, and treated as A(a, b; c, d; k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
6*a(n) + 1 is every second Mersenne number greater than or equal to M3, hence all Mersenne primes greater than M2 must be a 6*a(n) + 1 of this sequence. - Roderick MacPhee, Nov 01 2010
Smallest number having alternating bit sum n. Cf. A065359.
For n = 1, 2, ..., the last digit of a(n) is 1, 5, 1, 5, ... . - Washington Bomfim, Jan 21 2011
Rule 50 elementary cellular automaton generates this sequence. This sequence also appears in the second column of array in A173588. - Paul Muljadi, Jan 27 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 21, ..., in the square spiral whose edges are the Jacobsthal numbers A001045 and whose vertices are the numbers A000975. These parallel lines are two semi-diagonals in the spiral. - Omar E. Pol, Sep 10 2011
a(n), n >= 1, is also the inverse of 3, denoted by 3^(-1), Modd(2^(2*n - 1)). For Modd n see a comment on A203571. E.g., a(2) = 5, 3 * 5 = 15 == 1 (Modd 8), because floor(15/8) = 1 is odd and -15 == 1 (mod 8). For n = 1 note that 3 * 1 = 3 == 1 (Modd 2) because floor(3/2) = 1 and -3 == 1 (mod 2). The inverse of 3 taken Modd 2^(2*n) coincides with 3^(-1) (mod 2^(2*n)) given in A007583(n), n >= 1. - Wolfdieter Lang, Mar 12 2012
If an AVL tree has a leaf at depth n, then the tree can contain no more than a(n+1) nodes total. - Mike Rosulek, Nov 20 2012
Also, this is the Lucas sequence V(5, 4). - Bruno Berselli, Jan 10 2013
Also, for n > 0, a(n) is an odd number whose Collatz trajectory contains no odd number other than n and 1. - Jayanta Basu, Mar 24 2013
Sum_{n >= 1} 1/a(n) converges to (3*(log(4/3) - QPolyGamma[0, 1, 1/4]))/log(4) = 1.263293058100271... = A321873. - K. G. Stier, Jun 23 2014
Consider n spheres in R^n: the i-th one (i=1, ..., n) has radius r(i) = 2^(1-i) and the coordinates of its center are (0, 0, ..., 0, r(i), 0, ..., 0) where r(i) is in position i. The coordinates of the intersection point in the positive orthant of these spheres are (2/a(n), 4/a(n), 8/a(n), 16/a(n), ...). For example in R^2, circles centered at (1, 0) and (0, 1/2), and with radii 1 and 1/2, meet at (2/5, 4/5). - Jean M. Morales, May 19 2015
From Peter Bala, Oct 11 2015: (Start)
a(n) gives the values of m such that binomial(4*m + 1,m) is odd. Cf. A003714, A048716, A263132.
2*a(n) = A020988(n) gives the values of m such that binomial(4*m + 2, m) is odd.
4*a(n) = A080674(n) gives the values of m such that binomial(4*m + 4, m) is odd. (End)
Collatz Conjecture Corollary: Except for powers of 2, the Collatz iteration of any positive integer must eventually reach a(n) and hence terminate at 1. - Gregory L. Simay, May 09 2016
Number of active (ON, black) cells at stage 2^n - 1 of the two-dimensional cellular automaton defined by "Rule 598", based on the 5-celled von Neumann neighborhood. - Robert Price, May 16 2016
From Luca Mariot and Enrico Formenti, Sep 26 2016: (Start)
a(n) is also the number of coprime pairs of polynomials (f, g) over GF(2) where both f and g have degree n + 1 and nonzero constant term.
a(n) is also the number of pairs of one-dimensional binary cellular automata with linear and bipermutive local rule of neighborhood size n+1 giving rise to orthogonal Latin squares of order 2^m, where m is a multiple of n. (End)
Except for 0, 1 and 5, all terms are Brazilian repunits numbers in base 4, and so belong to A125134. For n >= 3, all these terms are composite because a(n) = {(2^n-1) * (2^n + 1)}/3 and either (2^n - 1) or (2^n + 1) is a multiple of 3. - Bernard Schott, Apr 29 2017
Given the 3 X 3 matrix A = [2, 1, 1; 1, 2, 1; 1, 1, 2] and the 3 X 3 unit matrix I_3, A^n = a(n)(A - I_3) + I_3. - Nicolas Patrois, Jul 05 2017
The binary expansion of a(n) (n >= 1) consists of n 1's alternating with n - 1 0's. Example: a(4) = 85 = 1010101_2. - Emeric Deutsch, Aug 30 2017
a(n) (n >= 1) is the viabin number of the integer partition [n, n - 1, n - 2, ..., 2, 1] (for the definition of viabin number see comment in A290253). Example: a(4) = 85 = 1010101_2; consequently, the southeast border of the Ferrers board of the corresponding integer partition is ENENENEN, where E = (1, 0), N = (0, 1); this leads to the integer partition [4, 3, 2, 1]. - Emeric Deutsch, Aug 30 2017
Numbers whose binary and Gray-code representations are both palindromes (i.e., intersection of A006995 and A281379). - Amiram Eldar, May 17 2021
Starting with n = 1 the sequence satisfies {a(n) mod 6} = repeat{1, 5, 3}. - Wolfdieter Lang, Jan 14 2022
Terms >= 5 are those q for which the multiplicative order of 2 mod q is floor(log_2(q)) + 2 (and which is 1 more than the smallest possible order for any q). - Tim Seuré, Mar 09 2024
The order of 2 modulo a(n) is 2*n for n >= 2. - Joerg Arndt, Mar 09 2024

Examples

			Apply Collatz iteration to 9: 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1.
Apply Collatz iteration to 27: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5 and hence 16, 8, 4, 2, 1. [Corrected by _Sean A. Irvine_ at the suggestion of Stephen Cornelius, Mar 04 2024]
a(5) = (4^5 - 1)/3 = 341 = 11111_4 = {(2^5 - 1) * (2^5 + 1)}/3 = 31 * 33/3 = 31 * 11. - _Bernard Schott_, Apr 29 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of powers of 4, A000302.
When converted to binary, this gives A094028.
Subsequence of A003714.
Primitive factors: A129735.

Programs

  • GAP
    List([0..25], n -> (4^n-1)/3); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a002450 = (`div` 3) . a024036
    a002450_list = iterate ((+ 1) . (* 4)) 0
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [ (4^n-1)/3: n in [0..25] ]; // Klaus Brockhaus, Oct 28 2008
    
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)-4*Self(n-2): n in [1..70]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    [seq((4^n-1)/3,n=0..40)];
    A002450:=1/(4*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[(4^n - 1)/3, {n, 0, 127}] (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
    LinearRecurrence[{5, -4}, {0, 1}, 30] (* Harvey P. Dale, Jun 23 2013 *)
  • Maxima
    makelist((4^n-1)/3, n, 0, 30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n) = (4^n-1)/3;
    
  • PARI
    my(z='z+O('z^40)); Vec(z/((1-z)*(1-4*z))) \\ Altug Alkan, Oct 11 2015
    
  • Python
    def A002450(n): return ((1<<(n<<1))-1)//3 # Chai Wah Wu, Jan 29 2023
  • Scala
    ((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).scanLeft(0: BigInt)( + ) // Alonso del Arte, Sep 17 2019
    

Formula

From Wolfdieter Lang, Apr 24 2001: (Start)
a(n+1) = Sum_{m = 0..n} A060921(n, m).
G.f.: x/((1-x)*(1-4*x)). (End)
a(n) = Sum_{k = 0..n-1} 4^k; a(n) = A001045(2*n). - Paul Barry, Mar 17 2003
E.g.f.: (exp(4*x) - exp(x))/3. - Paul Barry, Mar 28 2003
a(n) = (A007583(n) - 1)/2. - N. J. A. Sloane, May 16 2003
a(n) = A000975(2*n)/2. - N. J. A. Sloane, Sep 13 2003
a(n) = A084160(n)/2. - N. J. A. Sloane, Sep 13 2003
a(n+1) = 4*a(n) + 1, with a(0) = 0. - Philippe Deléham, Feb 25 2004
a(n) = Sum_{i = 0..n-1} C(2*n - 1 - i, i)*2^i. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*3^k. - Paul Barry, Aug 20 2004
a(n) = center term in M^n * [1 0 0], where M is the 3 X 3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 0 0] = [A007583(n-1) a(n) A007583(n-1)]. E.g., a(4) = 85 since M^4 * [1 0 0] = [43 85 43] = [A007583(3) a(4) A007583(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = Sum_{k = 0..n, j = 0..n} C(n, j)*C(j, k)*A001045(j - k). - Paul Barry, Feb 15 2005
a(n) = Sum_{k = 0..n} C(n, k)*A001045(n-k)*2^k = Sum_{k = 0..n} C(n, k)*A001045(k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A125118(n, 3) for n > 2. - Reinhard Zumkeller, Nov 21 2006
a(n) = Sum_{k = 0..n} 2^(n - k)*A128908(n, k), n >= 1. - Philippe Deléham, Oct 19 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A100335(k). - Philippe Deléham, Oct 30 2008
If we define f(m, j, x) = Sum_{k = j..m} binomial(m, k)*stirling2(k, j)*x^(m - k) then a(n-1) = f(2*n, 4, -2), n >= 2. - Milan Janjic, Apr 26 2009
a(n) = A014551(n) * A001045(n). - R. J. Mathar, Jul 08 2009
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) = 5*a(n-1) - 4*a(n-2), a(0) = 0, a(1) = 1, a(2) = 5. - Wolfdieter Lang, Oct 18 2010
a(0) = 0, a(n+1) = a(n) + 2^(2*n). - Washington Bomfim, Jan 21 2011
A036555(a(n)) = 2*n. - Reinhard Zumkeller, Jan 28 2011
a(n) = Sum_{k = 1..floor((n+2)/3)} C(2*n + 1, n + 2 - 3*k). - Mircea Merca, Jun 25 2011
a(n) = Sum_{i = 1..n} binomial(2*n + 1, 2*i)/3. - Wesley Ivan Hurt, Mar 14 2015
a(n+1) = 2^(2*n) + a(n), a(0) = 0. - Ben Paul Thurston, Dec 27 2015
a(k*n)/a(n) = 1 + 4^n + ... + 4^((k-1)*n). - Gregory L. Simay, Jun 09 2016
Dirichlet g.f.: (PolyLog(s, 4) - zeta(s))/3. - Ilya Gutkovskiy, Jun 26 2016
A000120(a(n)) = n. - André Dalwigk, Mar 26 2018
a(m) divides a(m*n), in particular: a(2*n) == 0 (mod 5), a(3*n) == 0 (mod 3*7), a(5*n) == 0 (mod 11*31), etc. - M. F. Hasler, Oct 19 2018
a(n) = 4^(n-1) + a(n-1). - Bob Selcoe, Jan 01 2020
a(n) = A178415(1, n) = A347834(1, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
a(n) = A000225(2*n)/3. - John Keith, Jan 22 2022
a(n) = A080674(n) + 1 = A047849(n) - 1 = A163834(n) - 2 = A155701(n) - 3 = A163868(n) - 4 = A156605(n) - 7. - Ray Chandler, Jun 16 2023
From Peter Bala, Jul 23 2025: (Start)
The following are examples of telescoping products. Cf. A016153:
Product_{k = 1..2*n} 1 + 2^k/a(k+1) = a(n+1)/A007583(n) = (4^(n+1) - 1)/(2*4^n + 1).
Hence, Product_{k >= 1} 1 + 2^k/a(k+1) = 2.
Product_{k >= 1} 1 - 2^k/a(k+1) = 2/5, since 1 - 2^n/a(n+1) = b(n)/b(n-1), where b(n) = 2 - 3/(1 - 2^(n+1)).
Product_{k >= 1} 1 + (-2)^k/a(k+1) = 2/3, since 1 + (-2)^n/a(n+1) = c(n)/c(n-1), where c(n) = 2 - 1/(1 + (-2)^(n+1)).
Product_{k >= 1} 1 - (-2)^k/a(k+1) = 6/5, since 1 - (-2)^n/a(n+1) = d(n)/d(n-1), where d(n) = 2 - 1/(1 - (-2)^(n+1)). (End)

A075677 Reduced Collatz function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (3k+1)/2^r, with r as large as possible.

Original entry on oeis.org

1, 5, 1, 11, 7, 17, 5, 23, 13, 29, 1, 35, 19, 41, 11, 47, 25, 53, 7, 59, 31, 65, 17, 71, 37, 77, 5, 83, 43, 89, 23, 95, 49, 101, 13, 107, 55, 113, 29, 119, 61, 125, 1, 131, 67, 137, 35, 143, 73, 149, 19, 155, 79, 161, 41, 167, 85, 173, 11, 179, 91, 185, 47, 191, 97, 197
Offset: 1

Views

Author

T. D. Noe, Sep 25 2002

Keywords

Comments

The even-indexed terms a(2i+2) = 6i+5 = A016969(i), i >= 0 [Comment corrected by Bob Selcoe, Apr 06 2015]. The odd-indexed terms are the same as A067745. Note that this sequence is A016789 with all factors of 2 removed from each term. Also note that a(4i-1) = a(i). No multiple of 3 is in this sequence. See A075680 for the number of iterations of R required to yield 1.
From Bob Selcoe, Apr 06 2015: (Start)
All numbers in this sequence appear infinitely often.
From Eq. 1 and Eq. 2 in Formulas: Eq. 1 is used with 1/3 of the numbers in this sequence, Eq. 2 is used with 2/3 of the numbers.
(End)
Empirical: For arbitrary m, Sum_{n=2..A007583(m)} (a(n) - a(n-1)) = 0. - Fred Daniel Kline, Nov 23 2015
From Wolfdieter Lang, Dec 07 2021: (Start)
Only positive numbers congruent to 1 or 5 modulo 6 appear.
i) For the sequence entry with value A016921(m), for m >= 0, that is, a value from {1, 7, 13, ...}, the indices n are given by the row of array A178415(2*m+1, k), for k >= 1.
ii) For the sequence entry with value A007528(m), for m >= 1, that is, a value from {5, 11, 17, ...}, the indices n are given by the row of array A178415(2*m, k), for k >= 1.
See also the array A347834 with permuted row numbers and columns k >= 0. (End)

Examples

			a(11) = 1 because 21 is the 11th odd number and R(21) = 64/64 = 1.
From _Wolfdieter Lang_, Dec 07 2021: (Start)
i) 1 (mod 6) entry 1 = A016921(0) appears for n = A178415(1, k) = A347834(1, k-1) (the arrays), for k >= 1, that is, for {1, 5, 21, ..} = A002450.
ii) 5 (mod 6) entry 11 = A007528(2) appears for n = A178415(4, k) = A347835(3, k-1) (the arrays), for k >= 1, that is, for {7, 29, 117, ..} = A072261. (End)
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E16, pp. 330-336.
  • Victor Klee and Stan Wagon, Old and new unsolved problems in plane geometry and number theory, The Mathematical Association of America, 1991, p. 225, C(2n+1) = a(n+1), n >= 0.
  • Jeffrey C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see p. 57, also (90-9), p. 306.

Crossrefs

Cf. A006370, A014682 (for non-reduced Collatz maps), A087230 (A371093), A371094.
Odd bisection of A139391.
Even bisection of A067745, which is also the odd bisection of this sequence.
After the initial 1, the second leftmost column of A256598.
Row 2 of A372283.

Programs

  • Haskell
    a075677 = a000265 . subtract 2 . (* 6) -- Reinhard Zumkeller, Jan 08 2014
    
  • Maple
    f:=proc(n) local t1;
    if n=1 then RETURN(1) else
    t1:=3*n+1;
    while t1 mod 2 = 0 do t1:=t1/2; od;
    RETURN(t1); fi;
    end;
    # N. J. A. Sloane, Jan 21 2011
  • Mathematica
    nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
    v[x_] := IntegerExponent[x, 2]; f[x_] := (3*x + 1)/2^v[3*x + 1]; Table[f[2*n - 1], {n, 66}] (* L. Edson Jeffery, May 06 2015 *)
  • PARI
    a(n)=n+=2*n-1;n>>valuation(n,2) \\ Charles R Greathouse IV, Jul 05 2013
    
  • Python
    from sympy import divisors
    def a(n):
        return max(d for d in divisors(n) if d % 2)
    print([a(6*n - 2) for n in range(1, 101)]) # Indranil Ghosh, Apr 15 2017, after formula by Reinhard Zumkeller

Formula

a(n) = A000265(6*n-2) = A000265(3*n-1). - Reinhard Zumkeller, Jan 08 2014
From Bob Selcoe, Apr 05 2015: (Start)
For all n>=1 and for every k, there exists j>=0 dependent upon n and k such that either:
Eq. 1: a(n) = (3n-1)/2^(2j+1) when k = ((4^(j+1)-1)/3) mod 2^(2j+3). Alternatively: a(n) = A016789(n-1)/A081294(j+1) when k = A002450(j+1) mod A081294(j+2). Example: n=51; k=101 == 5 mod 32, j=1. a(51) = 152/8 = 19.
or
Eq. 2: a(n) = (3n-1)/4^j when k = (5*2^(2j+1) - 1)/3 mod 4^(j+1). Alternatively: a(n) = A016789(n-1)/A000302(j) when k = A072197(j) mod A000302(j+1). Example: n=91; k=181 == 53 mod 64, j=2. a(91) = 272/16 = 17.
(End) [Definition corrected by William S. Hilton, Jul 29 2017]
a(n) = a(n + g*2^r) - 6*g, n > -g*2^r. Examples: n=59; a(59)=11, r=5. g=-1: 11 = a(27) = 5 - (-1)*6; g=1: 11 = a(91) = 17 - 1*6; g=2: 11 = a(123) = 23 - 2*6; g=3: 11 = a(155) = 29 - 3*6; etc. - Bob Selcoe, Apr 06 2015
a(n) = a((1 + (3*n - 1)*4^(k-1))/3), k>=1 (cf. A191669). - L. Edson Jeffery, Oct 05 2015
a(n) = a(4n-1). - Bob Selcoe, Aug 03 2017
a(n) = A139391(2n-1). - Antti Karttunen, May 06 2024
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 26 2024
G.f.: Sum_{k>=1} ((3 + 2*(-1)^k)*x^(3*2^(k - 1) - (-2)^k/3 + 1/3) + (3 - 2*(-1)^k)*x^(2^(k - 1) - (-2)^k/3 + 1/3))/(x^(2^k) - 1)^2. - Miles Wilson, Oct 26 2024

A006368 The "amusical permutation" of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.

Original entry on oeis.org

0, 1, 3, 2, 6, 4, 9, 5, 12, 7, 15, 8, 18, 10, 21, 11, 24, 13, 27, 14, 30, 16, 33, 17, 36, 19, 39, 20, 42, 22, 45, 23, 48, 25, 51, 26, 54, 28, 57, 29, 60, 31, 63, 32, 66, 34, 69, 35, 72, 37, 75, 38, 78, 40, 81, 41, 84, 43, 87, 44, 90, 46, 93, 47, 96, 49, 99, 50, 102, 52, 105, 53
Offset: 0

Views

Author

Keywords

Comments

A permutation of the nonnegative integers.
There is a famous open question concerning the closed trajectories under this map - see A217218, A028393, A028394, and Conway (2013).
This is lodumo_3 of A131743. - Philippe Deléham, Oct 24 2011
Multiples of 3 interspersed with numbers other than multiples of 3. - Harvey P. Dale, Dec 16 2011
For n>0: a(2n+1) is the smallest number missing from {a(0),...,a(2n-1)} and a(2n) = a(2n-1) + a(2n+1). - Bob Selcoe, May 24 2017
From Wolfdieter Lang, Sep 21 2021: (Start)
The permutation P of positive natural numbers with P(n) = a(n-1) + 1, for n >= 1, is the inverse of the permutation given in A265667, and it maps the index n of A178414 to the index of A047529: A178414(n) = A047529(P(n)).
Thus each number {1, 3, 7} (mod 8) appears in the first column A178414 of the array A178415 just once. For the formulas see below. (End)
Starting at n = 1, the sequence equals the smallest unused positive number such that a(n)-a(n-1) does not appear as a term in the current sequence. - Scott R. Shannon, Dec 20 2023

Examples

			9 is odd so a(9) = round(3*9/4) = round(7-1/4) = 7.
		

References

  • J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52.
  • R. K. Guy, Unsolved Problems in Number Theory, E17.
  • J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006368 n | u' == 0   = 3 * u
              | otherwise = 3 * v + (v' + 1) `div` 2
              where (u,u') = divMod n 2; (v,v') = divMod n 4
    -- Reinhard Zumkeller, Apr 18 2012
    
  • Magma
    [n mod 2 eq 1 select Round(3*n/4) else 3*n/2: n in [0..80]]; // G. C. Greubel, Jan 03 2024
  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi; # N. J. A. Sloane, Jan 21 2011
    A006368:=(1+3*z+z**2+3*z**3+z**4)/(1+z**2)/(z-1)**2/(1+z)**2; # [Conjectured (correctly, except for the offset) by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    Table[If[EvenQ[n],(3n)/2,Floor[(3n+2)/4]],{n,0,80}] (* or *) LinearRecurrence[ {0,1,0,1,0,-1},{0,1,3,2,6,4},80] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    a(n)=(3*n+n%2)\(2+n%2*2)
    
  • PARI
    a(n)=if(n%2,round(3*n/4),3*n/2)
    
  • Python
    def a(n): return 0 if n == 0 else 3*n//2 if n%2 == 0 else (3*n+1)//4
    print([a(n) for n in range(72)]) # Michael S. Branicky, Aug 12 2021
    

Formula

If n even, then a(n) = 3*n/2, otherwise, a(n) = round(3*n/4).
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((1-x^2)*(1-x^4)). - Michael Somos, Jul 23 2002
a(n) = -a(-n).
From Reinhard Zumkeller, Nov 20 2009: (Start)
a(n) = A006369(n) - A168223(n).
A168221(n) = a(a(n)).
A168222(a(n)) = A006369(n). (End)
a(n) = a(n-2) + a(n-4) - a(n-6); a(0)=0, a(1)=1, a(2)=3, a(3)=2, a(4)=6, a(5)=4. - Harvey P. Dale, Dec 16 2011
From Wolfdieter Lang, Sep 21 2021: (Start)
Formulas for the permutation P(n) = a(n-1) + 1 mentioned above:
P(n) = n + floor(n/2) if n is odd, and n - floor(n/4) if n is even.
P(n) = (3*n-1)/2 if n is odd; P(n) = (3*n+2)/4 if n == 2 (mod 4); and P(n) = 3*n/4 if n == 0 (mod 4). (End)

Extensions

Edited by Michael Somos, Jul 23 2002
I replaced the definition with the original definition of Conway and Guy. - N. J. A. Sloane, Oct 03 2012

A072197 a(n) = 4*a(n-1) + 1 with a(0) = 3.

Original entry on oeis.org

3, 13, 53, 213, 853, 3413, 13653, 54613, 218453, 873813, 3495253, 13981013, 55924053, 223696213, 894784853, 3579139413, 14316557653, 57266230613, 229064922453, 916259689813, 3665038759253, 14660155037013, 58640620148053, 234562480592213, 938249922368853, 3752999689475413
Offset: 0

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 03 2002

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1, j] = 1, A[i, i] := 2, (i > 1), A[i, i - 1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n - 1) = (-1)^n*charpoly(A, -2). - Milan Janjic, Jan 26 2010
Numbers whose binary representation is 11 together with n times 01. For example, 213 = 11010101 (2). - Omar E. Pol, Nov 22 2012
The Collatz-function starting with a(n) will terminate at 1 after 2*n + 7 steps. This is because 3*a(n) + 1 = 5*2^(2n + 1), and the Collatz-function starting with 5 terminates at 1 after 5 additional steps. So for example, a(2) = 53; Collatz sequence starting with 53 follows: 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1 (11 steps). - Bob Selcoe, Apr 03 2015
a(n) is also the sum of the numerator and denominator of the binary fractions 0.1, 0.101, 0.10101, 0.1010101... Thus 0.1 = 1/2 with 1 + 2 = 3, 0.101 = 1/2 + 1/8 = 5/8 with 5 + 8 = 13; 0.10101 = 1/2 + 1/8 + 1/32 = 21/32 with 21 + 32 = 53. - J. M. Bergot, Sep 28 2016
a(n), for n >= 2, is also the smallest odd number congruent to 5 modulo 8 for which the modified reduced Collatz map given in A324036 has n consecutive extra steps compared to the reduced Collatz map given in A075677. - Nicolas Vaillant, Philippe Delarue, Wolfdieter Lang, May 09 2019

Examples

			a(1) = 13 because a(0) = 3 and 4 * 3 + 1 = 13.
a(2) = 53 because a(1) = 13 and 4 * 13 + 1 = 53.
a(3) = 213 because a(2) = 53 and 4 * 53 + 1 = 213.
		

Crossrefs

Programs

Formula

a(n) = (10*4^n - 1)/3 = 10*A002450(n) + 3. - Henry Bottomley, Dec 02 2002
a(n) = 5*a(n-1) - 4*a(n-2), n > 1. - Vincenzo Librandi, Oct 31 2011
a(n) = 2^(2*(n + 1)) - (2^(2*n + 1) + 1)/3 = A000302(n + 1) - A007583(n). - Vladimir Pletser, Apr 12 2014
a(n) = (5*2^(2*n + 1) - 1)/3. - Bob Selcoe, Apr 03 2015
G.f.: (3-2*x)/((1-x)*(1-4*x)). - Colin Barker, Sep 28 2016
a(n) = A020988(n) + A020988(n+1) + 1 = 2*(A002450(n) + A002450(n+1)) + 1. - Yosu Yurramendi, Jan 24 2017
a(n) = A002450(n+1) + 2^(2*n+1). - Adam Michael Bere, May 13 2021
a(n) = a(n-1) + 5*2^(2*n-1), for n >= 1, with a(0) = 3. - Wolfdieter Lang, Aug 16 2021
a(n) = A178415(2,n+1) = A347834(2,n), arrays, for n >= 0. - Wolfdieter Lang, Nov 29 2021
E.g.f.: exp(x)*(10*exp(3*x) - 1)/3. - Elmo R. Oliveira, Apr 02 2025

Extensions

More terms from Henry Bottomley, Dec 02 2002

A347834 An array A of the positive odd numbers, read by antidiagonals upwards, giving the present triangle T.

Original entry on oeis.org

1, 3, 5, 7, 13, 21, 9, 29, 53, 85, 11, 37, 117, 213, 341, 15, 45, 149, 469, 853, 1365, 17, 61, 181, 597, 1877, 3413, 5461, 19, 69, 245, 725, 2389, 7509, 13653, 21845, 23, 77, 277, 981, 2901, 9557, 30037, 54613, 87381, 25, 93, 309, 1109, 3925, 11605, 38229, 120149, 218453, 349525
Offset: 1

Views

Author

Wolfdieter Lang, Sep 20 2021

Keywords

Comments

For the definition of this array A see the formula section.
The rows of A appear in a draft by Immmo O. Kerner in eqs. (1) and (2) as so-called horizontal sequences (horizontale Folgen). Thanks to Dr. A. Eckert for sending me this paper.
This array with entry A(k, n) becomes equal to the array T with T(n, k) given in A178415 by using a permutation of the rows, and changing the offset: A(k, n) = T(pe(k), n+1), with pe(3*(L+1)) = 4*(L+1), pe(1+3*L) = 1 + 2*L, pe(2+3*L) = 2*(1 + 2*L), for L >= 0. This permutation appears in A265667.
A proper sub-array is A238475(n, k) = A(1 + 3*(k-1), n-1), for k >= 1 and n >= 1.
In the directed Collatz tree with nodes labeled with only positive odd numbers (see A256598 for the paths), here called CTodd, the level L = 0 (on the top) has the node with label 1 as root. Because 1 -> 1 there is an arrow (a 1-cycle or loop) at the root. The level L = 1 consists of the nodes with labels A(1, n), for n >= 1, and each node is connected to 1 by a downwards directed arrow. The next levels for L >= 2 are obtained using the successor rule (used also by Kerner): S(u) = (4*u - 1)/3 if u == 1 (mod 3), (2*u - 1)/3 if u == 5 (mod 3), and there is no successor S(u) = empty if u = 3 (mod 6), that is, this node is a leaf.
However, each node with label u on level L >= 1, except a leaf, has as successors at level L + 1 not only the node with S(u) but all the nodes with labels A(S(u), n), for n >= 0.
In this way each node (also the root) of this CTodd has in-degree 1 and infinite out-degree (for L >= 2 there are infinitely many infinite outgoing arrows). All nodes with label A(k, n) with n >= 1, have the same precursor as the node A(k,0) in this tree for each k >= 1.
Except for the loop (1-cycle) for the root 1 there are no cycles in this directed tree CTodd.
That each number N = 5 + 8*K, for K >= 0 appears in array A for some column n >= 1 uniquely can be proved, using the fact of strictly increasing rows and columns, by showing that the columns n = 1, 2, ..., c contain all positive integers congruent to 5 modulo 8 except those of the positive congruence class A(1, c+1) modulo 2^(2*c+3) by induction on c. [added Dec 05 2021]
Row index k for numbers congruent to 5 modulo 8: Each number N = 5 + 8*K, for K >= 0, from A004770 is a member of row k of the array A starting with element A(k, 0) = (2*A065883(2 + 3*N) - 1)/3. For this surjective map see A347840. [simplified Dec 05 2021]
The Collatz conjecture can be reduced to the conjecture that in this rooted and directed tree CTodd each positive odd number appears as a label once, that is, all entries of the array A appear.

Examples

			The array A(k, n) begins:
k\n  0   1   2    3    4     5      6      7       8       9       10 ...
-------------------------------------------------------------------------
1:   1   5  21   85  341  1365   5461  21845   87381  349525  1398101
2:   3  13  53  213  853  3413  13653  54613  218453  873813  3495253
3:   7  29 117  469 1877  7509  30037 120149  480597 1922389  7689557
4:   9  37 149  597 2389  9557  38229 152917  611669 2446677  9786709
5:  11  45 181  725 2901 11605  46421 185685  742741 2970965 11883861
6:  15  61 245  981 3925 15701  62805 251221 1004885 4019541 16078165
7:  17  69 277 1109 4437 17749  70997 283989 1135957 4543829 18175317
8:  19  77 309 1237 4949 19797  79189 316757 1267029 5068117 20272469
9:  23  93 373 1493 5973 23893  95573 382293 1529173 6116693 24466773
10: 25 101 405 1621 6485 25941 103765 415061 1660245 6640981 26563925
...
--------------------------------------------------------------------
The triangle T(k, n) begins:
k\n  0  1   2    3    4     5     6      7      8      9 ...
------------------------------------------------------------
1:   1
2:   3  5
3:   7 13  21
4:   9 29  53   85
5:  11 37 117  213  341
6:  15 45 149  469 853   1365
7:  17 61 181  597 1877  3413  5461
8:  19 69 245  725 2389  7509 13653  21845
9:  23 77 277  981 2901  9557 30037  54613  87381
10: 25 93 309 1109 3925 11605 38229 120149 218453 349525
...
-------------------------------------------------------------
Row index k of array A, for entries 5 (mod 8).
213 = 5 + 8*26. K = 28 is even, (3*231+1)/16 = 40, A065883(40) = 10, hence A(k, 0) = N' = (10-1)/3 = 3, and k = 2. Moreover, n = log_4((3*213 + 1)/(3*A(2,0) + 1)) = log_4(64) = 3. 213 = A(2, 3).
85 = 5 + 8*10. K = 10 is even, (3*85 + 1)/16 = 16, A065883(16) = 1, N' = (1-1)/3 = 0 is even, hence A(k, 0) = 4*0 + 1 = 1, k = 1. 85 = A(1, 3).
61 = 5 + 8*7, K = 7 is odd, k = (7+1)/2 + ceiling((7+1)/4) = 6, and n = log_4((3*61 + 1)/(3*A(6,0) + 1)) = 1. 61 = A(6, 1).
----------------------------------------------------------------------------
		

Crossrefs

Row sequences of the array A, also diagonal sequences of the triangle T: -A007583 (k=0), A002450(n+1), A072197, A072261(n+1), A206374(n+1), A072262(n+1), A072262(n+1), A072201(n+1), A330246(n+1), ...
Column sequences of the array A, also of the triangle T (shifted): A047529, A347836, A347837, ...

Programs

  • Maple
    # Seen as an array:
    A := (n, k) -> ((3*(n + floor(n/3)) - 1)*4^(k+1) - 2)/6:
    for n from 1 to 6 do seq(A(n, k), k = 0..9) od;
    # Seen as a triangle:
    T := (n, k) -> 2^(2*k + 1)*(floor((n - k)/3) - k + n - 1/3) - 1/3:
    for n from 1 to 9 do seq(T(n, k), k = 0..n-1) od;
    # Using row expansion:
    gf_row := k -> (1 / (x - 1) - A047395(k)) / (4*x - 1):
    for k from 1 to 10 do seq(coeff(series(gf_row(k), x, 11), x, n), n = 0..10) od;
    # Peter Luschny, Oct 09 2021
  • Mathematica
    A347834[k_, n_] := (4^n*(6*(Floor[k/3] + k) - 2) - 1)/3;
    Table[A347834[k - n, n], {k, 10}, {n, 0, k - 1}] (* Paolo Xausa, Jun 26 2025 *)

Formula

Array A:
A(k, 0) = A047529(k) (the positive odd numbers {1, 3, 7} (mod 8));
A(k, n) = ((3* A(k, 0) + 1)*4^n - 1)/3, for k >= 1 and n >= 0.
Recurrence for rows k >= 1: A(k, n) = 4*A(k, n-1) + 1, for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k).
Explicit form: A(k, n) = ((3*(k + floor(k/3)) - 1)*4^(n+1) - 2)/6, k >= 1, n >= 0. Here 3*(k + floor(k/3)) = A319451(k).
Hence A(k, n) = 5 + 8*(2*A(k, n-2)), for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k), and 2*A(k, -1) = (A(k, 1) - 5)/8 = k - 1 + floor(k/3) (equals index n of A(k, 1) in the sequence (A004770(n+1))_{n >= 0}). A(k, -1) is half-integer if k = A007494(m) = m + ceiling(m/2), for m >= 1, and A(k, -1) = 2*K if k = 1 + 3*K = A016777(K), for K >= 0.
O.g.f.: expansion in z gives o.g.f.s for rows k, also for k = 0: -A007583; expansion in x gives o.g.f.s for columns n.
G(z, x) = (2*(-1 + 3*z + 3*z^2 + 7*z^3)*(1-x) - (1-4*x)*(1-z^3)) / (3*(1-x)*(1-4*x)*(1-z)*(1-z^3)).
Triangle T:
T(k, n) = A(k - n, n), for k >= 1 and n = 0..k-1.
A(k, n) = [x^n] (1/(x - 1) - A047395(k)) / (4*x - 1). - Peter Luschny, Oct 09 2021

A072261 a(n) = 4*a(n-1) + 1, a(1)=7.

Original entry on oeis.org

7, 29, 117, 469, 1877, 7509, 30037, 120149, 480597, 1922389, 7689557, 30758229, 123032917, 492131669, 1968526677, 7874106709, 31496426837, 125985707349, 503942829397, 2015771317589, 8063085270357, 32252341081429, 129009364325717, 516037457302869
Offset: 1

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002

Keywords

Comments

These are the integers N which on application of the Collatz function yield the number 11. The Collatz function: if N is an odd number then (3N+1)/2^r yields a positive odd integer for some value of r (which in this case is 11).
These numbers reach 11 in Collatz function iteration after 2(n+1) steps and so end in 1 after exactly 2n+18 steps. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 08 2004
Numbers whose binary representation is 111 together with n - 1 times 01. For example, a(4) = 469 = 111010101 (2). - Omar E. Pol, Nov 24 2012

Crossrefs

Programs

  • GAP
    List([1..25], n-> (11*4^n -2)/6); # G. C. Greubel, Jan 14 2020
  • Magma
    [(11*4^n -2)/6: n in [1..25]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq(coeff(series(x*(7-6*x)/((1-x)*(1-4*x)), x, n+1), x, n), n = 1..25); # G. C. Greubel, Jan 14 2020
  • Mathematica
    a[n_]:= 4a[n-1] +1; a[1]=7; Table[a[n], {n,25}]
    NestList[4#+1&,7,30] (* or *) LinearRecurrence[{5,-4},{7,29},30] (* Harvey P. Dale, Sep 04 2023 *)
  • PARI
    Vec(x*(7-6*x)/((1-x)*(1-4*x)) + O(x^25)) \\ Colin Barker, Oct 27 2019
    
  • Sage
    [(11*4^n -2)/6 for n in (1..25)] # G. C. Greubel, Jan 14 2020
    

Formula

a(n) = (11*4^n - 2)/6 = 22*A002450(n-1) + 7. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 08 2004
From Colin Barker, Oct 27 2019: (Start)
G.f.: x*(7 - 6*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n>2. (End)
E.g.f.: (-9 - 2*exp(x) + 11*exp(4*x))/6. - G. C. Greubel, Jan 14 2020
a(n) = a(n-1) + 11*2^(2*n-3), for n >= 2, with a(1) = 7. - Wolfdieter Lang, Aug 16 2021
a(n) = A178415(4, n) = A347834(3, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

Extensions

Edited and extended by Robert G. Wilson v, Jul 17 2002
More terms from Colin Barker, Oct 27 2019

A206374 a(n) = (7*4^n - 1)/3.

Original entry on oeis.org

2, 9, 37, 149, 597, 2389, 9557, 38229, 152917, 611669, 2446677, 9786709, 39146837, 156587349, 626349397, 2505397589, 10021590357, 40086361429, 160345445717, 641381782869, 2565527131477, 10262108525909, 41048434103637, 164193736414549, 656774945658197
Offset: 0

Views

Author

Brad Clardy, Feb 07 2012

Keywords

Comments

First bisection of A062092 and A081253, second bisection of A097163. - Bruno Berselli, Feb 12 2012
Except a(0)=2, this is the 3rd row of table A178415. - Michel Marcus, Apr 13 2015

Crossrefs

Cf. A002450, A006666, A072197; A002042 (first differences), A178415, A347834.

Programs

  • Magma
    [(7*4^n-1)/3 : n in [0..30]];
    
  • Mathematica
    Table[(7(4^n) - 1)/3, {n, 0, 24}] (* Alonso del Arte, Feb 11 2012 *)
    CoefficientList[Series[(2-x)/(1-5*x+4*x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-4},{2,9},30] (* Vincenzo Librandi, Mar 20 2012 *)
  • PARI
    vector(20,n,(7*4^(n-1)-1)/3) \\ Derek Orr, Apr 12 2015

Formula

G.f.: (2-x)/(1-5*x+4*x^2). - Bruno Berselli, Feb 12 2012
a(n) = A083597(n)+1. - Bruno Berselli, Feb 12 2012
a(n) = 4*a(n-1)+1 for n>0, a(0)=2. - Bruno Berselli, Oct 22 2015
a(n) = 7*A002450(n) + 2. - Yosu Yurramendi, Jan 24 2017
A006666(a(n)) = 2*n+11 for n > 0. - Juan Miguel Barga Pérez, Jun 18 2020
a(n) = 5*a(n-1) - 4*a(n-2) for n >= 2. - Wesley Ivan Hurt, Jun 30 2020
a(n) = A178415(3, n) = A347834(4, n-1), arrays, for n >= 1.- Wolfdieter Lang, Nov 29 2021

A072262 a(n) = 4*a(n-1) + 1, a(1)=11.

Original entry on oeis.org

11, 45, 181, 725, 2901, 11605, 46421, 185685, 742741, 2970965, 11883861, 47535445, 190141781, 760567125, 3042268501, 12169074005, 48676296021, 194705184085, 778820736341, 3115282945365, 12461131781461, 49844527125845
Offset: 1

Views

Author

N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002

Keywords

Comments

These are the integers N which on application of the Collatz function yield the number 17. The Collatz function: if N is an odd number then (3N+1)/2^r yields a positive odd integer for some value of r (which in this case is 17).
Numbers whose binary representation is 1011 together with n - 1 times 01. For example, a(4) = 725 = 1011010101 (2). - Omar E. Pol, Nov 24 2012

Crossrefs

Programs

  • GAP
    List([1..30], n-> (17*4^n -2)/6); # G. C. Greubel, Jan 14 2020
  • Magma
    [(17*4^n -2)/6: n in [1..30]]; // G. C. Greubel, Jan 14 2020
    
  • Maple
    seq( (17*4^n -2)/6, n=1..30); # G. C. Greubel, Jan 14 2020
  • Mathematica
    a[n_]:= 4a[n-1] +1; a[1]=11; Table[a[n], {n,25}]
    NestList[4#+1&,11,30] (* or *) LinearRecurrence[{5,-4},{11,45},30] (* Harvey P. Dale, Dec 25 2014 *)
  • PARI
    vector(30, n, (17*4^n -2)/6) \\ G. C. Greubel, Jan 14 2020
    
  • Sage
    [(17*4^n -2)/6 for n in (1..30)] # G. C. Greubel, Jan 14 2020
    

Formula

From Bruno Berselli, Dec 16 2011: (Start)
G.f.: x*(11-10*x)/(1-5*x+4*x^2).
a(n) = (17*2^(2*n-1) - 1)/3.
Sum_{i=1..n} a(i) = (a(n+1) - n + 1)/3 - 4. (End)
a(n) = 34*A002450(n-1) + 11 . - Yosu Yurramendi, Jan 24 2017
E.g.f.: (-15 - 2*exp(x) + 17*exp(4*x))/6. - G. C. Greubel, Jan 14 2020
a(n) = A178415(6, n) = A347834(5, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021

Extensions

Edited and extended by Robert G. Wilson v, Jul 17 2002

A178414 Least odd number in the Collatz (3x+1) preimage of odd numbers not a multiple of 3.

Original entry on oeis.org

1, 3, 9, 7, 17, 11, 25, 15, 33, 19, 41, 23, 49, 27, 57, 31, 65, 35, 73, 39, 81, 43, 89, 47, 97, 51, 105, 55, 113, 59, 121, 63, 129, 67, 137, 71, 145, 75, 153, 79, 161, 83, 169, 87, 177, 91, 185, 95, 193, 99, 201, 103, 209, 107, 217, 111, 225, 115, 233, 119, 241, 123, 249
Offset: 1

Views

Author

T. D. Noe, May 28 2010

Keywords

Comments

The odd non-multiples of 3 are 1, 5, 7, 11,... (A007310). The odd multiples of 3 have no odd numbers their Collatz pre-image. The next odd number in the Collatz iteration of a(2n) is 6n-1. The next odd number in the Collatz iteration of a(2n+1) is 6n+1. For each non-multiple of 3, there are an infinite number of odd numbers in its Collatz pre-image. For example:
Odd pre-images of 1: 1, 5, 21, 85, 341,... (A002450)
Odd pre-images of 5: 3, 13, 53, 213, 853,... (A072197)
Odd pre-images of 7: 9, 37, 149, 597, 2389,...
Odd pre-images of 11: 7, 29, 117, 469, 1877,...(A072261)
In each case, the pre-image sequence is t(k+1) = 4*t(k) + 1 with t(0)=a(n). The array of pre-images is in A178415.
a(n) = A047529(P(n)), with the permutation P(n) = A006368(n-1) + 1, for n >= 1. This shows that this sequence gives the numbers {1, 3, 7} (mod 8) uniquely. - Wolfdieter Lang, Sep 21 2021

Crossrefs

Programs

  • Mathematica
    Riffle[1+8*Range[0,50], 3+4*Range[0,50]]

Formula

a(n) = (n - 1)*(3 - (-1)^n) + 1. [Bogart B. Strauss, Sep 20 2013, adapted to the offset by Matthew House, Feb 14 2017]
From Matthew House, Feb 14 2017: (Start)
G.f.: x*(1 + 3*x + 7*x^2 + x^3)/((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4). (End)
From Philippe Deléham, Nov 06 2023: (Start)
a(2*n) = 4*n-1, a(2*n+1) = 8*n+1.
a(n) = 2*A022998(n-1)+1.
a(n) = 2*A114752(n)-1. (End)

A347836 a(n) = 8*(n + floor(n/3)) - 3; second column of A347834.

Original entry on oeis.org

5, 13, 29, 37, 45, 61, 69, 77, 93, 101, 109, 125, 133, 141, 157, 165, 173, 189, 197, 205, 221, 229, 237, 253, 261, 269, 285, 293, 301, 317, 325, 333, 349, 357, 365, 381, 389, 397, 413, 421, 429, 445, 453, 461, 477, 485, 493
Offset: 1

Views

Author

Wolfdieter Lang, Oct 07 2021

Keywords

Crossrefs

Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347837 (third column).

Programs

  • Maple
    seq(8*(n + floor(n/3)) - 3, n = 1..47); # Peter Luschny, Oct 10 2021
  • Mathematica
    A347836[n_] := 8*(n + Floor[n/3]) - 3; Array[A347836, 50] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {5, 13, 29, 37}, 50] (* Paolo Xausa, Feb 27 2024 *)

Formula

a(n) = A347834(n, 1) = A178415(A265667(n), 2), for n >= 1.
a(n) = ((3*A047529(n) + 1)*4 - 1)/3 = ((3*(n + floor(n/3)) - 1)*8 - 1)/3 = ((A319451(n) - 1)*8 - 1)/3, for n >= 1.
O.g.f.: G(x) = (-3 + 8*x + 8*x^2 + 19*x^3)/((1 - x)*(1 - x^3)), with a(0) = -3.
Showing 1-10 of 16 results. Next