A072211 a(n) = p-1 if n=p, p if n=p^e and e<>1, 1 otherwise; p a prime.
1, 1, 2, 2, 4, 1, 6, 2, 3, 1, 10, 1, 12, 1, 1, 2, 16, 1, 18, 1, 1, 1, 22, 1, 5, 1, 3, 1, 28, 1, 30, 2, 1, 1, 1, 1, 36, 1, 1, 1, 40, 1, 42, 1, 1, 1, 46, 1, 7, 1, 1, 1, 52, 1, 1, 1, 1, 1, 58, 1, 60, 1, 1, 2, 1, 1, 66, 1, 1, 1, 70, 1, 72, 1, 1, 1, 1, 1, 78, 1, 3, 1, 82, 1, 1, 1, 1, 1, 88, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000010.
Programs
-
Haskell
a072211 n = a072211_list !! (n-1) a072211_list = 1 : zipWith div (tail a217863_list) a217863_list -- Reinhard Zumkeller, Nov 24 2012
-
Maple
f:= proc(n) local P; P:= numtheory:-factorset(n); if nops(P) > 1 then 1 elif n = P[1] then P[1]-1 else P[1] fi end proc: 1, seq(f(n),n=2..100); # Robert Israel, Aug 25 2015
-
Mathematica
Table[Which[PrimeQ@ n, n - 1, ! PrimeQ@ n && PrimePowerQ@ n, First @@ FactorInteger@ n, True, 1], {n, 88}] (* Michael De Vlieger, Aug 25 2015 *)
-
PARI
a(n) = pp = isprimepower(n, &p); if (pp==1, n-1, if (pp, p, 1)); \\ Michel Marcus, Aug 25 2015
Formula
a(n) = Product_{d divides n} phi(n/d)^mu(d). - Vladeta Jovovic, Mar 08 2004
a(n) = A217863(n)/A217863(n-1) for n > 1. - Eric Desbiaux, Nov 23 2012; corrected by Thomas Ordowski, Aug 25 2015
D.g.f.: zeta(s) + Sum_{p prime} (p-2+p^(-s))/(p^s-1), - Robert Israel, Aug 25 2015
Comments