A072214 Number of partitions of Fibonacci(n).
1, 1, 1, 2, 3, 7, 22, 101, 792, 12310, 451276, 49995925, 22540654445, 60806135438329, 1596675274490756791, 758949605954969709105721, 14362612091531863067120268402228, 29498346711208035625096160181520548669694, 23537552807178094028466621551669121053281242290608650
Offset: 0
Keywords
Examples
F(5) = 5, F(4) = 3: 5 = 3+2 = 3+1+1 (or 5 = 3+1+1 = 2+2+1), then P(5,3) = 2 = A000041(2) = A000041(F(3)) = A072214(3).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..30 (terms n = 1..26 from Seiichi Manyama)
Programs
-
Haskell
a072214 = a000041 . a000045 . (+ 1) -- Reinhard Zumkeller, Dec 09 2015
-
Magma
[NumberOfPartitions(Fibonacci(n)): n in [1..18]]; // Vincenzo Librandi May 09 2016
-
Maple
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> combinat[numbpart](F(n)): seq(a(n), n=0..18); # Alois P. Heinz, Apr 06 2021
-
Mathematica
Table[PartitionsP[Fibonacci[n]], {n, 1, 17}]
-
PARI
a(n) = numbpart(fibonacci(n)); \\ Michel Marcus, May 09 2016
-
Python
from sympy import npartitions as p, fibonacci as f def a(n): return p(f(n)) # Indranil Ghosh, Jun 08 2017
Formula
Let P(i,j) denote the number of partitions of i whose highest term is j A072214(n) = A000041(F(n)) = P(F(n+2),F(n+1)) - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Sep 14 2007
a(n) = [x^Fibonacci(n)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Jun 08 2017
Extensions
Edited by Robert G. Wilson v, Jul 06 2002
a(18) by Vincenzo Librandi, May 09 2016
a(0)=1 prepended by Alois P. Heinz, Apr 06 2021
Comments