cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072264 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 8, 29, 127, 526, 2213, 9269, 38872, 162961, 683243, 2864534, 12009817, 50352121, 211105448, 885076949, 3710758087, 15557659006, 65226767453, 273468597389, 1146539629432, 4806961875241, 20153583772883, 84495560694854, 354254600948977, 1485241606321201
Offset: 0

Views

Author

Miklos Kristof, Jul 08 2002

Keywords

Examples

			a(5)=3*a(4)+5*a(3): 127=3*29+5*8=87+40.
		

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    [n le 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..26]];  // Bruno Berselli, Oct 11 2011
    
  • Maple
    seq(coeff(series((1-2*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 14 2020
  • Mathematica
    LinearRecurrence[{3,5},{1,1},30] (* Harvey P. Dale, Feb 17 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
    
  • Sage
    def A072264_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x)/(1-3*x-5*x^2) ).list()
    A072264_list(30) # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: (1-2*x)/(1-3*x-5*x^2). - Jaume Oliver Lafont, Mar 06 2009
G.f.: G(0)*(1-2*x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 5^((n-1)/2)*( sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 2*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020

Extensions

Offset changed and more terms added by Bruno Berselli, Oct 11 2011