A072264 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=1.
1, 1, 8, 29, 127, 526, 2213, 9269, 38872, 162961, 683243, 2864534, 12009817, 50352121, 211105448, 885076949, 3710758087, 15557659006, 65226767453, 273468597389, 1146539629432, 4806961875241, 20153583772883, 84495560694854, 354254600948977, 1485241606321201
Offset: 0
Examples
a(5)=3*a(4)+5*a(3): 127=3*29+5*8=87+40.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,5).
Programs
-
GAP
a:=[1,1];; for n in [3..30] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
Magma
[n le 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..26]]; // Bruno Berselli, Oct 11 2011
-
Maple
seq(coeff(series((1-2*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 14 2020
-
Mathematica
LinearRecurrence[{3,5},{1,1},30] (* Harvey P. Dale, Feb 17 2018 *)
-
PARI
my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
-
Sage
def A072264_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-2*x)/(1-3*x-5*x^2) ).list() A072264_list(30) # G. C. Greubel, Jan 14 2020
Formula
G.f.: (1-2*x)/(1-3*x-5*x^2). - Jaume Oliver Lafont, Mar 06 2009
G.f.: G(0)*(1-2*x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 5^((n-1)/2)*( sqrt(5)*Fibonacci(n+1, 3/sqrt(5)) - 2*Fibonacci(n, 3/sqrt(5)) ). - G. C. Greubel, Jan 14 2020
Extensions
Offset changed and more terms added by Bruno Berselli, Oct 11 2011