cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072474 Sum of next n squares.

Original entry on oeis.org

1, 13, 77, 294, 855, 2071, 4403, 8492, 15189, 25585, 41041, 63218, 94107, 136059, 191815, 264536, 357833, 475797, 623029, 804670, 1026431, 1294623, 1616187, 1998724, 2450525, 2980601, 3598713, 4315402, 5142019, 6090755, 7174671, 8407728, 9804817, 11381789, 13155485
Offset: 1

Views

Author

Amarnath Murthy, Jun 20 2002

Keywords

Examples

			a(1) = 1^2 = 1;
a(2) = 2^2 + 3^2 = 13;
a(3) = 4^2 + 5^2 + 6^2 = 77.
		

Crossrefs

Cf. A006003 (for natural numbers), A260513 (for triangular numbers), A372583 (for pentagonal numbers), A372751 (for hexagonal numbers), A075664 (for cubes).

Programs

  • Magma
    [n*(3*n^2+1)*(n^2+2)/12: n in [1..35]]; // Vincenzo Librandi, Dec 31 2024
  • Mathematica
    Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]
  • PARI
    a(n) = n*(3*n^2+1)*(n^2+2)/12
    

Formula

a(n) = k*(k+1)*(2*k+1)/6 - r*(r+1)*(2*r+1)/6, where k = n*(n+1)/2 and r = n*(n-1)/2.
a(n) = A000330(n*(n+1)/2) - A000330(n*(n-1)/2).
a(n) = (n/12)*(3*n^2 + 1)*(n^2 + 2). - Benoit Cloitre, Jun 26 2002
G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - Colin Barker, Mar 23 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Jinyuan Wang, May 25 2020
E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - Stefano Spezia, May 14 2024

Extensions

Edited by Robert G. Wilson v, Jun 21 2002