A072502 Numbers that are run sums (trapezoidal, the difference between two triangular numbers) in exactly 3 ways.
9, 18, 25, 36, 49, 50, 72, 98, 100, 121, 144, 169, 196, 200, 242, 288, 289, 338, 361, 392, 400, 484, 529, 576, 578, 676, 722, 784, 800, 841, 961, 968, 1058, 1152, 1156, 1352, 1369, 1444, 1568, 1600, 1681, 1682, 1849, 1922, 1936, 2116, 2209, 2304, 2312, 2704
Offset: 1
Examples
a(1)=9 is the smallest number with 3 run sums: 2+3+4 = 4+5 = 9.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Ron Knott, Introducing Runsums - a sum of consecutive integers.
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article #99.1.6.
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a072502 n = a072502_list !! (n-1) a072502_list = f (singleton 9) $ drop 2 a001248_list where f s (x:xs) = m : f (insert (2 * m) $ insert x s') xs where (m,s') = deleteFindMin s -- Reinhard Zumkeller, May 01 2012
Formula
Sum_{n>=1} 1/a(n) = 2 * Sum_{p odd prime} 1/p^2 = 2 * A085548 - 1/2 = 0.404494... - Amiram Eldar, Feb 18 2021
Extensions
Extended by Ray Chandler, Dec 30 2011
Comments