cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001197 Zarankiewicz's problem k_2(n).

Original entry on oeis.org

4, 7, 10, 13, 17, 22, 25, 30, 35, 40, 46, 53, 57, 62, 68, 75, 82, 89, 97, 106, 109, 116, 123
Offset: 2

Views

Author

Keywords

Comments

a(n) is the minimum number k_2(n) such that any n X n matrix having that number of nonzero entries has a 2 X 2 submatrix with only nonzero entries. - M. F. Hasler, Sep 28 2021
a(n) <= (1 + sqrt(4*n-3))*n/2 + 1. - Max Alekseyev, Apr 03 2022

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 291.
  • R. K. Guy, A problem of Zarankiewicz, in P. Erdős and G. Katona, editors, Theory of Graphs (Proceedings of the Colloquium, Tihany, Hungary), Academic Press, NY, 1968, pp. 119-150.
  • Richard J. Nowakowski, Zarankiewicz's Problem, PhD Dissertation, University of Calgary, 1978, page 202.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A006613 - A006626 (other sizes, in particular A006616 = k_4).
Main diagonal of A376167.

Formula

a(n) = A072567(n) + 1. - Rob Pratt, Aug 09 2019
a(n) = n^2 - A347472(n) = n^2 - A350296(n) + 1. - Andrew Howroyd, Dec 26 2021

Extensions

Nowakowski's thesis, directed by Guy, corrected Guy's value for a(15) and supplied a(16)-a(21) entered by Don Knuth, Aug 13 2014
a(1) deleted following a suggestion from M. F. Hasler. - N. J. A. Sloane, Oct 22 2021
a(22)-a(24) from Jeremy Tan, Jan 23 2022

A350304 Maximum number of 1's in an n X n binary matrix without an all-ones 3 X 3 submatrix.

Original entry on oeis.org

1, 4, 8, 13, 20, 26, 33, 42, 49, 60, 69, 80, 92, 105, 120, 128
Offset: 1

Views

Author

Andrew Howroyd, Dec 24 2021

Keywords

Comments

Equivalently, the maximum number of edges in a bipartite graph that is a subgraph of K_{n,n} and has no K_{3,3} induced subgraph.

Examples

			Examples of a(3)=8, a(4)=13, a(5)=20, a(6)=26:
  x x x    x x x x    x x x x .    x x x x x .
  x x x    x x x .    x x x . x    x x x x . x
  x x .    x x . x    x x . x x    x x . . x x
           x . x x    x . x x x    x . x . x x
                      . x x x x    . x . x x x
                                   . . x x x x
		

References

  • W. Sierpiński, Sur un problème concernant un réseau à 36 points, Ann. Soc. Polon. Math., 24: 173-174 (1951).

Crossrefs

Formula

a(n) = A001198(n) - 1 = n^2 - A350237(n) = n^2 - A347473(n) - 1.

Extensions

a(14)-a(16) computed from A350237 by Max Alekseyev, Apr 01 2022, Oct 31 2022

A191873 A problem of Zarankiewicz: maximal number of 1's in an n X n matrix of 0's and 1's with 0's on the main diagonal and no "rectangle" with 1's at the four corners.

Original entry on oeis.org

0, 2, 6, 9, 12, 16, 21, 24, 29, 34, 39, 45
Offset: 1

Views

Author

R. H. Hardin and N. J. A. Sloane, Jun 18 2011

Keywords

Comments

In other words, the pattern
1...1
.....
1...1
is forbidden.
From Don Knuth, Aug 13 2014: (Start)
Well, it is well known from A001197 that a(8)<25. A001197 is essentially the same problem, but increased by 1, and without restricting the diagonals. The diagonal restriction is however of little interest, because it's easy to permute rows and columns and get all 0's or all 1's or probably any of the 2^n possible settings of the diagonal. At least, this is true when n=8; hence a(8) in this sequence is 24.
Transposing cols 1<->4 and 5<->8 in the example by Guy 1967 page 130 as cited in A001197 gives a(8)=24:
01110000
10010100
00010011
01000101
10100010
11001000
00101001
00001110
But as stated above, I think this is quite trivial, and I believe this sequence should be downplayed. Readers should look at the sequence A001197 --- that's what Zarankiewicz's problem asked for in 1951, namely the min number that forces a rectangle, not the max number that doesn't exclude it. (End)
Conjecture: for n >= 3, a(n) = A072567(n) = A001197(n) - 1 (per above comment). - Max Alekseyev, Jan 29 2022

References

  • B. Bollobas, Extremal Graph Theory, pp. 309ff.

Crossrefs

Extensions

a(8) confirmed, a(9)-a(12) added by Max Alekseyev, Feb 07 2022

A006620 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 2 X 2 submatrix.

Original entry on oeis.org

5, 8, 11, 15, 19, 23, 27, 32, 37, 43, 49, 54, 59, 64
Offset: 2

Views

Author

Keywords

Comments

a(n) <= A205805(2*n+1) + 1. - Max Alekseyev, Feb 02 2024

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A350189 Triangle T(n,k) read by rows: the number of symmetric binary n X n matrices with k ones and no all-1 2 X 2 submatrix.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 3, 6, 10, 9, 9, 4, 1, 4, 12, 28, 46, 72, 80, 80, 60, 16, 1, 5, 20, 60, 140, 296, 500, 780, 1005, 1085, 992, 560, 170, 1, 6, 30, 110, 330, 876, 1956, 4020, 7140, 11480, 16248, 19608, 20560, 16500, 9720, 3276, 360, 1, 7, 42, 182, 665, 2121, 5852, 14792, 33117, 68355, 126994, 214158
Offset: 0

Views

Author

R. J. Mathar, Mar 09 2022

Keywords

Comments

There are 2^(n^2) binary n X n matrices (entries of {0,1}). There are 2^(n*(n+1)/2) symmetric binary matrices. There are A184948(n,k) symmetric binary n X n matrices with k ones.
This sequence is the triangle T(n,k) of symmetric binary n x n matrices with k ones but no 2 X 2 submatrix with all entries = 1. [So in the display of these matrices there is no rectangle with four 1's at the corners.]
The row lengths minus 1 are 0, 1, 3, 6, 9, 12, 17, 21, 24, 29, ... and indicate the maximum number of 1's than can be packed into a symmetric binary n X n matrix without creating an all-1 quadrangle/submatrix of order 2.

Examples

			The triangle starts
  1;
  1 1;
  1 2 2 2;
  1 3 6 10 9 9 4;
  1 4 12 28 46 72 80 80 60 16;
  1 5 20 60 140 296 500 780 1005 1085 992 560 170;
  ...
To place 4 ones, one can place 2 of them in C(n,2) ways on the diagonal and the other 2 in n*(n-1)/2 ways outside the diagonal, avoiding one matrix that builds an all-1 submatrix, which are C(n,2)*(n*(n-1)/2-1) matrices. One can place all 4 on the diagonal in C(n,4) ways. One can place 2 outside the diagonal (the other 2 mirror symmetrically) in C(n*(n-1)/2,2) ways. Sum of the 3 terms is T(n,4) = C(n,3)*(5*n+3)/2. - _R. J. Mathar_, Mar 10 2022
		

Crossrefs

Cf. A001197 (conjectured row lengths), A352258 (row sums), A352801 (rightmost terms), A350296, A350304, A350237, A352472 (traceless symmetric).

Formula

T(n,0) = 1.
T(n,1) = n.
T(n,2) = A002378(n-1).
T(n,3) = A006331(n-1).
T(n,4) = n*(n-1)*(n-2)*(5*n+3)/12 = A147875(n)*A000217(n-1)/3. - R. J. Mathar, Mar 10 2022
T(n,5) = n*(n-1)*(n-2)*(13*n^2-n-24)/60. T(n,6) = n*(n-1)*(n-2)*(19*n^3-18*n^2-97*n+60)/180. T(n,7) = n*(n-1)*(n-2)*(n-3)*(58*n^3+75*n^2-223*n+180)/1260. - Conjectured by R. J. Mathar, Mar 11 2022; proved by Max Alekseyev, Apr 02 2022
G.f.: F(x,y) = Sum_{n,k} T(n,k)*x^n/n!*y^k = exp( Sum_G x^n(G) * y^u(G) / |Aut(G)| ), where G runs over the connected squarefree graphs with loops, n(G) is the number of nodes in G, u(G) the number of ones in the adjacency matrix of G, and Aut(G) is the automorphism group of G. It follows that F(x,y) = exp(x) * (1 + x*y + x^2*y^2 + (2/3*x^3 + x^2)*y^3 + (5/12*x^4 + 3/2*x^3)*y^4 + (13/60*x^5 + 3/2*x^4 + 3/2*x^3)*y^5 + (19/180*x^6 + 7/6*x^5 + 8/3*x^4 + 2/3*x^3)*y^6 + (29/630*x^7 + 3/4*x^6 + 19/6*x^5 + 10/3*x^4)*y^7 + O(y^8)), implying the above formulas for T(n,k). - Max Alekseyev, Apr 02 2022
Conjecture: the largest k such that T(n,k) is nonzero is k = A072567(n) = A001197(n) - 1. - Max Alekseyev, Apr 03 2022

A350296 Minimum number of 1's in an n X n binary matrix with no zero 2 X 2 submatrix.

Original entry on oeis.org

0, 1, 3, 7, 13, 20, 28, 40, 52, 66, 82, 99, 117, 140, 164, 189, 215, 243, 273, 304, 336, 376, 414, 454
Offset: 1

Views

Author

Andrew Howroyd, Dec 23 2021

Keywords

Examples

			Solutions for a(3)=3, a(4)=7, a(5)=13, a(6)=20:
  . . x    . . . x    . . . . x    . . . x x x
  . x .    . x x .    . x x x .    . x x . . x
  x . .    x . x .    x . x x .    x . x . x .
           x x . .    x x . x .    x x . x . .
                      x x x . .    . x x x x .
                                   x . x x . x
		

Crossrefs

Formula

a(n) = A347472(n) + 1 = n^2 - A001197(n) + 1 = n^2 - A072567(n).
a(n) >= A152125(n).

Extensions

a(22)-a(24) computed from A001197, added by Max Alekseyev, Feb 08 2022

A006614 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 2 X 4 submatrix.

Original entry on oeis.org

14, 21, 26, 32, 41, 48, 56, 67
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name updated at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A006615 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

15, 22, 31, 38, 46, 57
Offset: 4

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(9) added by Max Alekseyev, Feb 02 2024

A006622 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

12, 18, 26, 33, 41, 51
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name edited at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024

A006625 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+2) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

14, 21, 28, 36, 45, 55
Offset: 3

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024
Showing 1-10 of 11 results. Next