cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072762 n coded as binary word of length=n with k-th bit set iff k is prime (1<=k<=n), decimal value.

Original entry on oeis.org

0, 1, 3, 6, 13, 26, 53, 106, 212, 424, 849, 1698, 3397, 6794, 13588, 27176, 54353, 108706, 217413, 434826, 869652, 1739304, 3478609, 6957218, 13914436, 27828872, 55657744, 111315488, 222630977, 445261954, 890523909, 1781047818, 3562095636, 7124191272
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 08 2002

Keywords

Comments

a(n) is odd iff n is prime.
a(p) where p is prime is the numerator of Sum_{q <= p} 1/2^q where the sum is over primes up to p. - Alexander Adamchuk, Aug 22 2006
The n-th approximation to the Prime Constant is given by a(n)/2^n. - Anton Vrba (antonvrba(AT)yahoo.com), Nov 24 2006

Examples

			a(6) = '011010' = (((0*2+1)*2+1)*2*2+1)*2 = 26.
a(7) = '0110101' = (((0*2+1)*2+1)*2*2+1)*2*2+1 = 53.
a(8) = '01101010' = ((((0*2+1)*2+1)*2*2+1)*2*2+1)*2 = 106.
		

Crossrefs

Programs

  • Haskell
    a072762 n = foldl (\v d -> 2*v + d) 0 $ map a010051 [1..n]
    -- Reinhard Zumkeller, Sep 17 2011
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 0, 2 * a(n-1) + `if`(isprime(n), 1, 0))
        end:
    seq(a(n), n=1..40);  #  Alois P. Heinz, Jan 18 2011
  • Mathematica
    a[1] = 0; a[n_] := a[n] = 2*a[n-1] + Boole[PrimeQ[n]]; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Jun 14 2013 *)
    nxt[{n_,a_}]:={n+1,Boole[PrimeQ[n+1]]+2a}; Transpose[NestList[nxt,{1,0},30]][[2]] (* Harvey P. Dale, Jan 07 2015 *)
  • PARI
    an=0; print1(an,", "); for(n=2,31, an=2*an+isprime(n); print1(an,", ")) \\ Washington Bomfim, Jan 18 2011
    
  • PARI
    a(n)=my(s=1,p=2);forprime(q=3,n,s=s<<(q-p)+1;p=q);s<<(n-p) \\ Charles R Greathouse IV, Jun 03 2013
    

Formula

a(1) = 0 and a(n) = a(n-1)*2 + A010051(n) for n>1.
a(n) = (1/2)*(pi(n) + Sum_{i=1..n} 2^(n-i)*pi(i)), where pi = A000720. - Ridouane Oudra, Aug 26 2019
a(n) = floor(c*2^n), where c = A051006 is the prime constant. - Lorenzo Sauras Altuzarra, Jan 03 2023