cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A072805 Primes of form 4k+3 written in base 3.

Original entry on oeis.org

10, 21, 102, 201, 212, 1011, 1121, 1202, 2012, 2111, 2122, 2221, 10002, 10211, 10222, 11201, 11212, 12011, 12121, 20001, 20012, 20122, 21002, 21101, 21211, 22021, 22102, 22212, 100022, 100202, 101001, 101111, 102101, 102112, 110021
Offset: 1

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			83 ~ 10002 in base 3.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Prime[n]; If[Mod[s, 4]==3, Print[BaseForm[s, 3]]], {n, 1, 256}]

A072807 n-th prime prime(n) written in base (prime(n) (mod prime(n-1))).

Original entry on oeis.org

111, 101, 111, 23, 1101, 101, 10011, 113, 45, 11111, 101, 221, 101011, 233, 125, 135, 111101, 151, 1013, 1001001, 211, 1103, 225, 141, 1211, 1100111, 1223, 1101101, 1301, 91, 2003, 345, 10001011, 149, 10010111, 421, 431, 2213, 445, 455, 10110101
Offset: 2

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			Eventually non-decimal digit symbols appear, as in case of 307=17d, in base 14 = 307 mod 293.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, p, l;
          p:= ithprime(n); b:= irem(p, prevprime(p));
          if b=1 then l:= 1$p
        else l:= ""; while p>0 do l:= irem(p, b, 'p'), l od
          fi; parse(cat(l))
        end:
    seq(a(n), n=2..62);  # Alois P. Heinz, Sep 05 2019
  • Mathematica
    Table[BaseForm[Prime[w], Mod[Prime[w], Prime[w-1]]], {w, 2, 128}]
    Join[{111},FromDigits[IntegerDigits[#[[2]],Mod[#[[2]],#[[1]]]]]&/@ Partition[ Prime[Range[2,50]],2,1]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    a(n) = {my(p=prime(n), q=prime(n-1)); if ((p % q) != 1, d=digits(p, p % q); if (#select(x->(x>9), d), 0, fromdigits(d, 10)), fromdigits(vector(p, k, 1), 10));} \\ Michel Marcus, Sep 05 2019

Extensions

Name corrected by Michel Marcus, Sep 05 2019

A072804 n-th prime prime(n) written in base (prime(n) (mod 4)).

Original entry on oeis.org

10, 10, 11111, 21, 102, 1111111111111, 11111111111111111, 201, 212, 11111111111111111111111111111, 1011, 1111111111111111111111111111111111111, 11111111111111111111111111111111111111111, 1121, 1202, 11111111111111111111111111111111111111111111111111111, 2012
Offset: 1

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			4k+1 primes are written in base 1, while 4k+3 primes are in base 3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ If[#2 == 1, ConstantArray[1, #1], IntegerDigits[#1, #2]] & @@ {#, Mod[#, 4]} &@ Prime@ w, {w, 17}] (* Michael De Vlieger, Sep 04 2019 *)
  • PARI
    a(n) = {my(p=prime(n)); if ((p % 4) != 1, fromdigits(digits(p, p % 4), 10), fromdigits(vector(p, k, 1), 10));} \\ Michel Marcus, Sep 04 2019

A072806 Primes of the form 6k+5 written in base 5.

Original entry on oeis.org

10, 21, 32, 43, 104, 131, 142, 203, 214, 241, 313, 324, 401, 412, 423, 1011, 1022, 1044, 1132, 1143, 1204, 1231, 1242, 1402, 1413, 1424, 2001, 2012, 2023, 2034, 2111, 2133, 2221, 2232, 2342, 2403, 2414, 3013, 3024, 3101, 3134, 3211, 3233, 3244, 3321
Offset: 1

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			41 = 25 + 3*5 + 1 = 131_5.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Prime[n]; If[Mod[s, 6]==5, Print[BaseForm[s, 5]]], {n, 1, 256}]
    FromDigits[IntegerDigits[#, 5]] & /@  Select[Table[6 n + 5, {n, 0, 100}], PrimeQ] (* Harvey P. Dale, Oct 05 2023 *)
  • PARI
    lista(nn) = for (n=0, nn, if (isprime(p=6*n+5), print1(fromdigits(digits(p, 5)), ", "))); \\ Michel Marcus, Jul 09 2018

Formula

a(n) = A007091(A007528(n)). - Michel Marcus, Jul 09 2018

A166710 a(n)=prime(n) written in base the largest digit of prime(n).

Original entry on oeis.org

10, 10, 10, 10, 11, 111, 23, 21, 212, 32, 1011, 52, 221, 223, 65, 203, 65, 141, 124, 131, 133, 87, 123, 108, 117, 101, 10211, 212, 131, 11012, 241, 11212, 254, 164, 175, 1101, 313, 431, 326, 335, 218, 265, 232, 234, 238, 241, 11010011, 22021, 443, 274, 22122
Offset: 1

Views

Author

Zak Seidov, Oct 18 2009

Keywords

Comments

If prime(n) is a repunit then a(n)=prime(n) by convention.

Examples

			a(6)=23 because p(6)=13 written in base 3 is 23,
a(7)=21 because p(7)=19 written in base 9 is 21.
		

Crossrefs

Cf. A072803 n written in base Mod[n, 10].

Programs

  • Mathematica
    Table[p=Prime[n];id=IntegerDigits[p];ma=If[Max[id]==1,10,Max[id]];FromDigits[IntegerDigits[p,ma]],{n,1,128}]
Showing 1-5 of 5 results.