cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049605 Smallest k>1 such that k divides sigma(k*n).

Original entry on oeis.org

6, 3, 2, 6, 2, 2, 2, 3, 6, 2, 2, 2, 2, 2, 2, 6, 2, 3, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

a(n) = 2, 3 or 6. For any m, a(A028983(m)) = 2. If a(m)=6 then m is a square but if m is a square a(m) is not necessarily 6, first example is 7: a(7^2)=3 (cf. A072864).

Crossrefs

Cf. A028983 (locations of 2), A067051 (locations of 3), A072862 (locations of 6).

Programs

  • Maple
    A049605 := proc(n)
        for k from 2 do
            if modp(numtheory[sigma](k*n),k) = 0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    sk[n_]:=Module[{k=2},While[!Divisible[DivisorSigma[1,k*n],k],k++];k]; sk /@ Range[110] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    a(n) = {k = 2; while(sigma(k*n) % k, k++); k ;} \\ Michel Marcus, Nov 21 2013

A074216 Squares satisfying sigma(n)==0 (mod 3).

Original entry on oeis.org

49, 169, 196, 361, 441, 676, 784, 961, 1225, 1369, 1444, 1521, 1764, 1849, 2704, 3136, 3249, 3721, 3844, 3969, 4225, 4489, 4900, 5329, 5476, 5776, 5929, 6084, 6241, 7056, 7396, 8281, 8649, 9025, 9409, 10609, 10816, 11025, 11881, 12321, 12544
Offset: 1

Views

Author

Benoit Cloitre, Sep 17 2002

Keywords

Comments

Seems to contain all numbers of form k^2*p^2 where p are primes in A002476, k is not congruent to p and >=1.
Squares in A067051. - Michel Marcus, Dec 26 2013

Crossrefs

Programs

  • Magma
    [n: n in [1..14161]|IsSquare(n) and DivisorSigma(1,n) mod 3 eq 0 ]; // Marius A. Burtea, Aug 17 2019
  • Maple
    with(numtheory); A074216:=n->`if`(1-ceil(sigma(n^2)/3)+floor(sigma(n^2)/3)=1,n^2,NULL); seq(A074216(n), n=1..200); # Wesley Ivan Hurt, Dec 06 2013
  • Mathematica
    Select[Range[150]^2,Divisible[DivisorSigma[1,#],3]&] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    isok(n) = issquare(n) && !(sigma(n) % 3); \\ Michel Marcus, Aug 17 2019
    

Formula

Conjecture: a(n) = A072864(n)^2. - R. J. Mathar, May 19 2020
Showing 1-2 of 2 results.