A333339 a(n) is the smallest positive number k such that n divides 3^k - k.
1, 1, 3, 3, 7, 3, 2, 3, 9, 7, 4, 3, 16, 5, 27, 11, 5, 9, 29, 7, 27, 45, 39, 3, 73, 27, 27, 27, 22, 27, 132, 27, 36, 5, 27, 27, 65, 29, 27, 27, 27, 27, 10, 59, 27, 39, 12, 27, 47, 73, 42, 27, 68, 27, 36, 27, 30, 47, 154, 27, 192, 147, 27, 59, 16, 45, 119, 75, 39
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from 1 do if 3 &^k - k mod n = 0 then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Mar 19 2020
-
Mathematica
a[n_] := Module[{k = 1}, While[!Divisible[3^k - k, n], k++]; k]; Array[a, 100] (* Amiram Eldar, Mar 16 2020 *)
-
PARI
a(n) = for(k=1, oo, if(Mod(3, n)^k==k, return(k)));
Formula
a(3^m) = 3^m for m >= 0.
a(3^m-m) = m for m >= 1. - Robert Israel, Mar 19 2020
Comments